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Abstract— Explicit results are presented for the complete rheological properties of dilute suspen-
sions of rigid, axisymmetric Brownian particles possessing fore—aft symmetry, when suspended in
a Newtonian liquid subjected to a general three-dimensional shearing flow, either steady or unsteady.
It is demonstrated that these rheological properties can be expressed in terms of five fundamental
material constants (exclusive of the solvent viscosity), which depend only upon the sizes and
shapes of the suspended particles. Expressions are presented for these scalar constants for a number
of solids of revolution, including spheroids, dumbbells of arbitrary aspect ratio and long slender
bodies. These are employed to calculate rheologicai properties for a variety of different shear flows,
including uniaxial and biaxial extensional flows, simple shear flows, and general two-dimensional
shear flows. It is demonstrated that the rheological properties appropriate to a general two-
dimensional shear flow can be deduced immediately from those for a simple shear flow. This
observation greatly extends the utility of much of the prior Couette flow literature, especially the
extensive numerical calculations of Scheraga et al. (1951, 1955).

The commonality of many disparate results dispersed and diffused in earlier publications is
empbhasized, and presented from a unified hydrodynamic viewpoint.
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A very substantial body of literature exists pertaining to the rheological properties of
dilute suspensions of rigid, neutrally buoyant, axisymmetric Brownian particles suspended
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in Newtonian liquids and subjected to homogeneous shearing flows, especially simple shear
flows. (See, for example, the extensive reviews of Bird, Warner & Evans 197! and Brenner
1972b.) Examples of bodies of revolution which have been studied in this manner are
spheres (Einstein 1906, 1911), spheroids (Scheraga 1955, Giesekus 1962a, Brenner 1972a,
Brenner & Condiff 1974, Leal & Hinch 1971, Hinch & Leal 1972, 1973), near spheres (Leal &
Hinch 1972), “non-interacting” and “first-order” spherical dumbbells (Bird, Warner &
Evans 1971, Bird & Warner 1971, Stewart & Serensen 1972), spherical dumbbells of arbi-
trary aspect ratio (Wakiya 1971, Nir & Acrivos 1973), and long slender bodies possessing
either pointed or blunt ends (Okagawa, Cox & Mason 1973). For the latter two classes of
bodies rheological calculations have only been performed for situations in which the rotary
Brownian movement is supposed negligible, and then only for the case of simple shear
flows. Neglect of rotary diffusion leads to an indeterminacy in the rheological calculations
of the type originally encountered by Jeffery (1922) in connection with spheroidal particles.
This indeterminacy stems from the lack of a unique, time-independent distribution of par-
ticle orientations in such circumstances.

In general, apart from the work of Cox & Brenner (1971)—which does not explicitly
include the rotary Brownian movement—the pertinent rheological theory has been
developed anew for each different particle shape, and for each different type of homogeneous
shear, e.g. simple shear and extensional flows. Moreover. even when both of these charac-
teristics were fixed, it was generally left to different investigators to separately investigate
the asymptotic behavior in the limits of both small and large rotary Péclet numbers
(i.e. dominant and weak rotary Brownian movement). This has produced a diffuse and
unwieldy body of literature on the subject, especially when one considers that those
investigations which have been based upon energy dissipation methods (in contrast to
dynamical methods) generally fail to yield complete rheological information in regard to
such items as normal stresses. The difficulties of conceptually organizing all this information
in a coherent manner are even further compounded by the inclusion of unsteady (homog-
eneous) flows in the class of fluid motions of rheological interest.

The only serious (and successful) attempt to date to present these rheological resuits
within a unified conceptual framework is that of Bird et al. (1971) and Armstrong & Bird
(1973), who limit themselves primarily to “non-interacting” dumbbells. (Indeed. they go
even further by including non-rigid dumbbells, as for example in the case where the spheres
comprising the dumbbell are connected by a Hookean spring.) Unfortunately, the “non-
interacting” dumbbell constitutes a very special, indeed sometimes singular, case of a body
of revolution, so that the quantitative connection between their dumbbell results and the
analogous body of literature on spheroids is not evident. In particular, their analysis fails
to stress the fundamental hydrodynamic theme common to all these problems, including
non-axisymmetric bodies of any shape whatsoever.

In this paper we furnish a general dynamical rheological theory for axially symmetric
particles (possessing fore-aft symmetry) which subsumes within its purview all prior rigid-
body results in the literature as special cases. In particular, it is demonstrated that the
rheological properties of dilute suspensions of such bodies, including the rotary Brownian
diffusion, can be expressed in terms of the volume fraction of suspended particles, the
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viscosity of the homogeneous Newtonian carrier fluid, and five nondimensional scalar
material constants which depend only upon the shape of the suspended particles. This con-
clusion applies to any type of homogeneous shear flow. either steady or unsteady.

These five fundamental material constants are purely hydrodynamic in origin, and may
be derived from the solution of the quasistatic Stokes equations for a single transiating-
rotating axisymmetric particle of requisite shape suspended in a simple shear flow. To cal-
culate the values of these constants it suffices to consider only the two special cases where
the symmetry axis of the particle lies parallel and perpendicular, respectively. to the stream-
lines of a simple shear flow, the symmetry axis being perpendicular to the vorticity vector
in both cases. Though these fundamental hydrodynamic constants are derived from the
solution for a steady simple shear flow in the absence of rotary diffusion. the constants thus
obtained are sufficient to calculate rheological properties for any homogeneous shear flow,
simple or not. and steady or not, including the case where the rotary Brownian motion is
sensible. The Stokes—Einstein equations (Brenner 1967) furnish the necessary link between
low Reynolds number hydrodynamics and rotary diffusion.

Though attention is confined to axisymmetric particles, the manner in which the subse-
quent theory may be applied to any centrally-symmetric particles. or indeed particles of
arbitrary shape, will be reasonably self evident.

The theory derived here is used to weave together disparate and fragmentary results
dispersed in the prior literature, presenting these known results in a more general context.
and deriving several new results along the way—especially for the cases of dumbbells of
arbitrary aspect ratio and long slender bodies. In particular. it is pointed out that. contrary
to what is commonly assumed. circular cylindrical rods are not adequately modelled by
long thin prolate spheroids. Whether the ends of the particle are “pointed™ (as in the case
of a prolate spheroid) or “blunt™ (as in the case of a cylindrical rod) proves crucial in relating
rheological and analogous transport properties to the longitudinal and transverse dimen-
sions of the long slender body.

Present results are also relevant to theories of streaming birefringence, since two of the
five “rheological™ parameters (B and D,) are identical to those appearing in birefringence
theories of the Peterlin & Stuart (1939a, 1939b) type. Moreover. the same orientational
distribution function is common to both phenomena.

The remainder of this Introductory section is devoted to a summary of the essential
contents of the present paper.

In Section 2 expressions are written down for the hydrodynamic force. torque and
“stresslet” exerted by an incompressible Newtonian fluid upon an isolated, translating-
rotating, rigid particle of arbitrary shape suspended in a general homogeneous shearing
flow which extends to infinity. Rotational Brownian motion is not considered. These three
dynamical parameters are linear functions of the viscosity of the carrier fluid, and of the
translational and rotational slip velocities between particle and fluid, as well as of the un-
disturbed rate of strain. The proportionality coefficients in these linear relationships are
second, third and fourth rank material tensors (and pseudotensors). dependent solely upon
the geometrical configuration of the wetted particle surface: that is, upon the size and shape
of the body. The general forms adopted by these material tensors for an axially symmetric
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particle possessing fore—aft symmetry (i.e. a center of symmetry) are deduced by geometric
symmetry arguments, and expressed in terms of a body-fixed unit vector ¢; drawn along the
axis of revolution of the body. The proportionality coefficients appearing in these expres-
sions, relating the material tensors to various linear combinations of the tensors e;e; " - - ¢,
of appropriate tensorial rank, are scalars. These material scalars are dependent only upon
the size and shape of the axisymmetric body.

Of these material scalars arising in the expressions for the force, torque and stresslet
exerted on a body of revolution, only eight are independent. Of these, two are irrelevant to
the rheological theory, which pertains to force-free particles, and a third is irrelevant in
consequence of the fact that rotation of the body about its symmetry axis does not alter
the orientation of this axis, thereby constituting a “dead” degree of freedom. Hence, the
intrinsic rheological properties of a dilute suspension of identical, hydrodynamically non-
interacting, force-free, rigid, axisymmetric, Brownian particles are ultimately determined
by the remaining five material constants. One of these plays a dual role, in that it also enters
as a hydrodynamic resistance coefficient in a Stokes—Einstein equation for the rotary dif-
fusion coefficient. Hence, in this role, it appears as a parameter in the partial differential
equation governing the orientational distribution function.

Various inequalities imposed upon these material constants by the positive-definite
nature of the mechanical energy dissipation are derived in Section 2.

Explicit expressions for these five material constants (as well as certain auxiliary con-
stants derived from these) are obtained in Section 3 for various axisymmetric bodies pos-
sessing fore—aft symmetry, including spheroids (with spheres, circular disks, and long thin
prolate spheroids as special cases), long slender bodies possessing either pointed or blunt
ends, and spherical dumbbells of arbitrary aspect ratio, including the limiting case where
the spheres touch. Limiting expressions are also obtained for “non-interacting” dumbbells
(composed of rigidly-connected spheres situated so far apart as to asymptotically satisfy the
condition of no hydrodynamic interaction between them), as well as for “first-order” dumb-
bells (in which hydrodynamic interactions among the two spheres composing the dumbbell
are taken account of, to terms of first order in the ratio of sphere radii to center-to-center
separation distance). Dumbbells of these latter types are of special interest in connection
with the rheological properties of “stiff” macromolecular chains (Bird et al. 1971).

Material constants for the long slender bodies and dumbbells are extracted from the
respective analyses of Cox (1970, 1971) and Okagawa et al. (1973), and of Wakiya (1971),
each of which pertains only to the case of a steady simple shearing motion in the absence of
rotary diffusion. Despite the restricted nature of the special class of problems from which
these coefficients were extracted, the constants themselves suffice to analyze much more
general rheological problems, including arbitrary homogeneous shearing flows (steady or
unsteady) in circumstances where rotary diffusion is sensible. Such is the advantage of the
broader context advocated in the present paper.

Section 4 provides a general theory of the rheological properties of suspensions of the
type under consideration, correct to terms of the first order in the volume fraction of
suspended particles. In particular, an expression is derived relating the mean deviatoric
stress in the suspension to the mean velocity gradient (or, equivalently, the mean rate of
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strain tensor and mean vorticity vector) for steady, homogeneous shearing flows. In general,
this relation (cf. [4.27]) is highly nonlinear. Utilization of this theory requires knowledge
of the five fundamental material constants, as well as the second moment of the oriéntational
distribution function. The latter can be calculated by solving the second-order partial dif-
ferential equation governing this distribution function. For a prescribed mean velocity
gradient, the only parameters appearing in the latter equation are two of the above five
material constants. Hence, no new material constants are required to parametrize the
second moment. In turn, this leads to the conclusion that the original five material constants
suffice for a complete rheological theory.

The remainder of the paper is devoted to various applications of the general theory out-
lined in Section 4 to various important classes of shearing flows.

Calculations are presented in Section 5 of the explicit rheological properties arising
during axisymmetric (i.e. uniaxial) extensional and compressive flows. It is demonstrated
that the rheological behavior encountered during such flows can be represented by a single
scalar viscosity coefficient, which is a function of the fractional rate of elongation G, all
other things being equal. Through use of an exact expression for the dependence of the
orientational distribution function upon G, an expression is derived for the variation of the
intrinsic viscosity function with G, represented in dimensionless form by a rotary Péclet
number P = G/D,. Asymptotic values of this intrinsic viscosity, derived from the exact
solution, are given for both small and large P. Graphs depicting the variation of intrinsic
viscosity with dimensionless deformation rate are given for both oblate and prolate spheroids
of various aspect ratios over the entire Péclet number range, -~ x < P < .

In agreement with the numerical calculations of Clarke (1973) for this case, it is found
that the rheological behavior is of the shear-thickening type for oblate spheroids over the
complete range of shear rates, — o0 < G < oc. However, for prolate spheroids this behavior
obtains only for compressional flows. For prolate spheroids in extensional flows this beha-
vior changes from shear thickening to shear thinning beyond a certain dimensionless shear
rate (which depends upon the axis ratio of the spheroid) for circumstances in which the
axis ratio exceeds 10.473.

Section 6 is devoted to a comparable rheological study for plane (i.e. two-dimensional.
biaxial) extensional flows. In contrast with the uniaxial case of Section 5, rheological
properties are no longer completely described by a single, shear-dependent viscosity func-
tion. Rather, two “normal” stress functions are now required. An exact expression is obtained
for the dependence of the orientational distribution function upon the (dimensionless) rate
of extension, and this is employed to derive explicit expressions for the variation of the
intrinsic normal stresses with rotary Péclet number over the complete range of Péclet
numbers. Results are presented graphically for both oblate and prolate spheroids, and
limiting asymptotic expressions are derived for both small and large extensional rates.

Rheological properties are derived in Section 7 for general homogeneous shear flows, but
only for small dimensionless shear rates (i.c. small rotary Péclet numbers). This restriction
in the range of applicability comes about through the inability to obtain an exact solution for
the orientational distribution function valid for all Péclet numbers. The (time-independent)
Jaumann derivative, which expresses the proper material frame-indifference of the rheo-
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logical constitutive equation when account is taken of material rotation, appears explicitly
in the general constitutive relation for the mean deviatoric stresses. The appearance of this
derivative stems directly from its original appearance in the expression for the orientational
distribution function, which must itself manifest such invariance. That is, the distribution
of particle orientations must be measured relative to the rotating material, if it is to possess
physical significance. It is demonstrated, inter alia, that in the limit of zero Péclet number,
where the disorienting effect of the rotary diffusion dominates over the orienting effect of
the hydrodynamic stresses on the suspended particles, the rheological behavior is New-
tonian. This corresponds to the case where the distribution of particle orientations is iso-
tropic. Non-Newtonian behavior in rigid-particle suspensions generally arises from the
anisotropic distribution of particle orientations engendered by the shear and vorticity
fields.

Special attention is devoted in Sections 8-10 to the case of simple shear flows, the latter
two sections being reserved for a discussion of the limiting behavior at large rotary Péclet
numbers. In general, rheological behavior in simple shear flow can be expressed in terms
of three viscometric functions—a viscosity function and two normal stress functions-—each
of which is generally shear-rate dependent. General expressions are derived for these visco-
metric functions in terms of material constants and three goniometric functions, each of
which depends only upon the second moment of the orientational distribution function.
These goniometric factors, which are fundamental to the theory of simple shear flow, depend
upon the rotary Péclet number P and the dimensionless parameter B (derivable from the
five basic material constants).

Analytic expressions which apply for BP « 1 are deduced for these goniometric factors
by specializing the general results of Section 7. These, in turn, are utilized to obtain expres-
sions for the three viscometric functions, valid for the case of small Péclet numbers. Where
possible, these results are compared with prior results in the literature for spheroids, and
“non-interacting” as well as “first-order” dumbbells.

Special attention is devoted to the limiting case where B = 1, which arises in the case of
“non-interacting” dumbbells, as well as for other long-thin bodies of large aspect ratio.
Here, by adaptation of the rheological results reported by Stewart & Serensen (1972) for
dumbbells, it proves possible to extract the goniometrical factors (appropriate to the value
B = 1) over the complete range of Péclet numbers, 0 < P < oo. These goniometrical fac-
tors may then be applied to suspended particles other than dumbbells. It is pointed out that
use of the “first-order” dumbbell theory of Bird & Warner (1971) and Stewart & Serensen
(1972) may result in appreciable errors in rheological calculations pertaining to such dumb-
bells, especially at large Péclet numbers.

By means of a simple transformation, the numerical values for the goniometrical factors
derived from the Stewart—Serensen work for B = 1 may also be utilized for the case where

= — 1. These results then lead a calculation of the rheological properties of a suspension
of circular disks in a simple shear flow over the complete range of Péclet numbers.

The numerical calculations of Scheraga et al. (1951, 1955), relating to the viscosity and
streaming birefringence functions for prolate and oblate spheroids, are inverted so as to
obtain the requisite goniometric factors as a function of B (or, equivalently, the “equivalent
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axis ratio” r,) and of the Péclet number in the ranges —1 < B < ] and 0 < P < 60.
Though derived from results pertaining to spheroids, these goniometric factors apply to
any axisymmetric particle. In the limit where B — 1 these three quantities show excellent
agreement with the comparable numerical values derived from the Stewart & Serensen
(1972) analysis. These goniometric factors are employed to compute the normal stress
functions for suspensions of prolate and oblate spheroids subjected to a simple shear flow,
the viscosity function for such bodies already being available from the work of Scheraga
(1955). These are compared with analytical asymptotic results derived for both small and
large P. The primary and secondary normal stresses are of opposite algebraic sign. each
increasing in magnitude from zero at zero shear rate (i.e. P = 0) to a finite upper limit at
infinite shear rate (P = x).

The Scheraga tabulation of goniometric factors in Section § is limited to values of P < 60
in consequence of the rather slow numerical convergence of the doubly-infinite series used
in their computation for values of P greatly in excess of 60. With this limitation in mind,
Leal & Hinch (1971) and Hinch & Leal (1972) in a series of papers developed asymptotic
solutions for spheroids, valid for the case where P > 1. Since spheroids possess the property
that |B| < 1, this same restriction applies to the Leal-Hinch analysis. Section 9 is essentially
a recapitulation of the Leal-Hinch theory, but adapted to axisymmetric particles of any
shape. (The comparable problem for {B| > 1 is considered in Section 10.)

Two possible situations arise according as P > r? + r,* (“weak™ Brownian motion)
or r> +r,3» P> 1 (“intermediate” case), wherein r, = [(B + 1);(B — 1)]'*. Numerical
values of the goniometric factors for the “weak™ case are shown to be in quite good agree-
ment with the results of Scheraga et al. in the common region of overlap. thereby strengthen-
ing confidence in the numerical credibility of both sets of computations. In the “inter-
mediate” case, large uncertainties exist in the Hinch & Leal (1972) numerical coefficients
entering into the calculation of the goniometric factors. Here, the calculations of Stewart &
Serensen (1972) were employed to obtain presumably more accurate values for these coef-
ficients than those given in the original Hinch & Leal (1972} paper. The goniometric factors
for the “intermediate” case obtained in this manner show modestly good agreement with the
numerical calculations of Scheraga in their common domain of validity.

The results of these large Péclet number asymptotic expansions are employed to obtain
expressions for the viscometric functions appropriate to several different body shapes. A
minor error in the Hinch & Leal (1972) expressions for the primary normal stress differences
for spheroids is corrected.

The asymptotic analysis for P » | appropriate to bodies for which |B] > [ is vastly
different from that which obtains for |B| < 1. In particular. in the absence of rotary dif-
fusion (P = oc), and when iB| > 1, an axisymmetric body ultimately adopts a unique ter-
minal orientation (relative to the principal axes of shear) which is independent of its initial
orientation. In contrast, when rotary diffusion is absent. and when |B| < 1. the body under-
goes a periodic rotation of the type first encountered by Jeffery (1922) for spheroidal par-
ticles. Whereas the limiting process P — xc is singular for |B| < 1 it is uniform for |B| > 1.
Calculation of the goniometric factors for P » 1 and |B} > 1 is brought to fruition in
Section 10 by use of a method outlined in Hinch’s (1971) thesis, after correcting an error in
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the latter’s work. In effect, the orientational distribution function is Gaussian about the
direction of the terminal orientation which obtains when the Brownian motion is wholly
absent.

It is pointed out in Section 11 that the distribution function and concomitant moments
thereof, required to compute the rheological properties for any two-dimensional flow (other
than an irrotational flow), can be deduced directly from those for a simple shear flow by an
appropriate re-interpretation of the physical significance of the rotary parameter B and
shear rate G. Thus, the simple shear flow results of Sections 8-10 can be immediately
adapted to calculate the rheological properties which obtain in almost every two-
dimensional flow.

Reference is also made in Section 11 to Wayland’s (1960) analysis of streaming bire-
fringence in dilute suspensions subjected to arbitrary two-dimensional flows. The same
goniometric factors required to calculate rheological properties appear in the streaming
birefringence problem too. Rather than referring the distribution function to a system of
material axes, Wayland chooses instead a set of rotating axes which, while translating with
the fluid, maintain a fixed orientation relative to the local direction of the (generally curved)
streamlines. It is demonstrated that the distribution function and, correspondingly, the
requisite goniometric factors relative to such “intrinsic” axes are directly calculable in
terms of comparable functions already available for a simple shear flow. This is done by
means of an appropriate re-definition of the significance to be attached to the rotary para-
meter B and shear rate G. Once again, then, the detailed results of Sections 8—10 are shown
to be adaptable to the solution of a rather more general class of two-dimensional flow prob-
lems than the simple shear for which they were originally derived.

Section 12 furnishes a general analysis of the rheological properties of a dilute suspension
of axisymmetric Brownian particles subjected to an arbitrary unsteady flow. In particular,
a general relation is derived expressing the deviatoric stress in terms of the time-dependent
shear and vorticity tensors, and the second moment of the orientational distribution func-
tion. The same five material constants required for the rheological characterization of
steady flows serve to uniquely characterize these unsteady flows too. The time-dependent
Jaumann time derivative, which expresses the proper material frame-indifference of the
rheological constitutive relation under rotation of the reference frame, arises naturally in
the theory, without a priori anticipation of its appearance. By way of example, a detailed
solution is given for the stress relaxation following the abrupt cessation of an arbitrary,
steady flow. It is demonstrated, at least for the case where the prior steady flow is a simple
shear, and for the case where P « 1, that the analysis yields results for the stress in agree-
ment with the detailed calculations of Bird et al. (1971) for idealized dumbbells composed
of non-interacting spheres.

2. MATERIAL TENSORS

Consider a single solid particle of arbitrary shape undergoing translation and rotation
in an unbounded incompressible Newtonian fluid subject to a homogeneous shear v® at
infinity. Denote by O an arbitrary origin fixed in the particle. Let U be the translational
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velocity of this point and € the angular velocity of the particle.
The undisturbed homogeneous shearing flow at infinity may be characterized by the
constant velocity gradient tensor,

g = Ut/ [2.1]

of which the symmetric and antisymmetric parts may be represented, respectively, by the
symmetric rate of shear tensor,

sy = s = 38y + g [2.2]

and the antisymmetric vorticity tensor

|89
(%)
[

) . B _ 1
ri = — A = 3gi — &) [
or, alternatively, the vorticity vector
0 = € Ay [24]

with ¢;;, the permutation symbol. In terms of these, the undisturbed shear flow may be
expressed in the form

U =00 g%+ SX;. [2.5]
wherein v’ denotes the value of the undisturbed shear flow at the point in the fluid presently
occupied by the O, x being the position vector measured relative to this point.

All relevant Reynolds numbers based on particle size, translational and rotational
velocities, and shear rate, are assumed sufficiently small compared with unity to justify
neglecting nonlinear terms in the Navier—Stokes equations. Thus, the fluid motion (v, p)
in the presence of the suspended particle is supposed governed by the quasistatic creeping
motion equations

Viv =y 'V,, V.v=0, [2.6a,b]
in which u, is the viscosity of the homogeneous fluid. The no-slip boundary condition
leads to the requirement that

ro= U + £,3,Qx, [2.7]
at the particle surface. Moreover, at large distances from the particle,
v, ~ vy as x| - x. [2.8]

corresponding to the requirement that the disturbance due to the presence of the particle
in the shearing flow be attenuated at infinity.

In consequence of the linearity of the differential equations and boundary conditions,
the hydrodynamic force F, torque L (about 0), and stresslet* A, exerted by the fluid on the
particle are linear vector functions of the translational slip velocity U — v°, the rotational

* This stresslet is related to Batchelor’s (1970) stresslet 8’ via the relation 4;; = S;;/5u,V,.
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slip velocity 2 — o, and the shear s. In the notation of Brenner (1972a) we therefore have
that

F, = ﬂo[‘K’j(U}’ -U)+ cKji(wj -Q)+ d’.’jksjk]s [2.9]
L; = uo [R(0] — U + Rijlo; — Q) + fiaspls [2.10}
Ajj = My (0f — U + Nl — Q) + Qijusu- [2.11]

The material tensors 'K; j»---» Qi in these relations are intrinsic properties of the particle
alone, being dependent only upon its size and shape, i.c. only upon the geometric con-
figuration of its wetted surface. These particle material tensors are constants relative to
body-fixed axes, locked into the particle, which translate and rotate with the body. Follow-
ing Brenner (1972a), in place of the careted material tensors in the expression for the torque,
it proves convenient to introduce the related tensors

‘Ki; = Kij/6V,. "Ki; = 'Ki;/6V,, 1 = T3/6V,, [2.12a,b,¢c]
where V, denotes the particle volume.
In consequence of the symmetry relation s;; = s;;, one may arbitrarily set
é)ijk = (bikj’ Tk = Tijs Qijia = Qujuir [2.13a,b,c]

leading to an appropriate reduction in the number of independent components of these
tensors. Further reduction in this number occurs as a result of the incompressibility con-
dition s;; = 0, but we shall not pursue the consequences of such details here, Moreover, in
view of the relations 4;; = 4; and 4; = 0 (Brenner 1972a) we may write without loss of
generality that

Mijk = Mjik’ Nijk = Njika Qijkl = Qﬁku [2.14a,b,¢]
and
M, =0, Ny = 0, Quiysy = 0. [2.15a, b, ¢c]

The summation convention on repeated indices is utilized throughout.
In addition to these “trivial” symmetry relations, we have also the “kinetic” symmetry
relations (Brenner 1964b)

Kij = Kji, 'Kij ="Ky, [2.16a, b]
and (Hinch 1972}
SVoNi = Ty SVMip = Oy, Qi = Qs (2.17a,b,¢c]
the first of which is equivalent to
N = $t;. (2.18]
Bodies possessing a center of symmetry possess the property that (Brenner 1964b, 1964c)
Ry =0, & = 0, My, = 0, [2.19a, b, ¢]

provided that the origin O is chosen to lie at the center of symmetry. For such bodies, further
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reduction occurs in the number of independent components of the five remaining material
tensors. but again we shall not enter into such details in the general case. Of special interest.
however. is the case of a body of revolution possessing fore-aft symmetry (i.e. a plane of
reflection symmetry normal to the symmetry axis). Such a body possesses a center of sym-
metry. which we will designate as the origin O.

Denote by e a body-fixed unit vector drawn along the symmetry axis of such an axi-
symmetric body. and let (e,.e,.e;) be the components of this vector in any system of
rectangular Cartesian axes (x,, x,. X;). space-fixed or body-fixed. Then the forms adopted
by the nonzero material tensors for such a particle are as follows:*

Kij = ee/R + (0, — ee)K . [2.20]
'Ki; = e;e/K +(5,; — eeyK _. [2.21]
Niw = (e + )N [2.22°
T = (808 + &,€,€,)T. [2.23]
Qi = (0405 + 040,00, + (d;;ece; + Oy e:6; — 3eje;ee))Q;
+ (Opeie; + dyeje, + Oyeie, + 0,68, — deieee)Qs. 12.24

The validity of the first four of these relations is demonstrated by Brenner (1964b, 1964c¢).
The last relation is new. its derivation being presented in Appendix A.

All of the uncareted scalars in the above expressions are dimensionless. Though principal
interest centers on circumstances where the axially symmetric body possesses fore—aft
symmetry, we remark in passing that each of these forms applies (at the center of reaction
of the body) even if the body lacks fore-aft symmetry (though the tensors ®; s and M,
are then nonzero). In view of [2.18] the scalar coefficients N and 1 are not independent. but

rather are connected by the expression
N = 6 1. [2.25]
5 i
It is readily verified that [2.20]-[2.24] satisfy all the general symmetry relations set forth
earlier, which must apply irrespective of the geometric symmetry of the body.

As will be demonstrated (cf. the remarks following [4.301), knowledge of only the five
dimensionless scalar coefficients 'K |, N (or 7). Q. Q, and Q; suffices to formulate a com-
pletely general theory of the rheological properties of dilute suspensions of identical axi-
symmetric particles (including the effects of rotary Brownian movement) in arbitrary
homogeneous shearing flows. Numerical values of these coefficients may be derived from
the solution of the appropriate hydrodynamic problem posed by [2.6]-[2.8] for the body
in question. Being dimensionless. these five “fundamental” scalar rheological material con-
stants depend only on the external shape of the particle, but not its size. In Section 3 of this
paper, values of these material constants are presented for a variety of differently shaped

particles.

* This section was written before the appearance of a paper by Nir & Acrivos (1973). which gives essentially
the same relations set forth in [2.20]-[2.24].
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In addition to the preceding material tensors, several others derived from them arise in
the subsequent rheological theory. These are discussed below.
Define the tensor B, = 2'K;; '7,;,. Equivalently,

By = 2Ky 'y [2.26]
For a body of revolution this reduces to the form
By = —(&;e, + E9€,€)B, [2.27]
in which B is the dimensionless scalar,
B =21/K,. [2.28a]
Alternatively, from [2.25],
B =5N/3K,. [2.28b]
When B lies in the range —1 < B < 1, we define the “equivalent axis ratio” r, as*
r, = (;—i—g)”z (Bt < 1). [2.29]
This is equivalent to
B= "z LRI [2.30]
re + 1

On the other hand, when B lies in either of the ranges w>B=1lor—ow<B< 1, we
define the symbol r, as

B + 1\172
Y el B > 1). 231
e IR 2,31
Equivalently,
2
B="1 (g>1 [2.32]

The question of which of the two ranges, |B| < 1 or |B| = 1, B lies in, proves crucial in
determining the rotational motion of a neutrally buoyant axisymmetric particle suspended
in a simple shearing flow (in the absence of rotary Brownian motion) (Bretherton 1962,
Brenner 1972c).

Another derived scalar of importance in the rheological theory is the rotary Brownian
diffusion coefficient D, for rotation of the axisymmetric particle about a transverse axis.
This is given by the Stokes—Einstein equation (Brenner 1967) as

D, = kT/u/K, = kT/6V,u,'K, [2.33]

where k is Boltzmann’s constant and T the absolute temperature. This rotary diffusivity
may therefore be calculated from the material constant 'K | .

* The physical significance of r, resides in the fact that for a spheroidal particle this parameter is equal to the
particle axis ratio r, of the spheroid. (See [3.14].)
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Finally, we define the derived tensor
Q% = Qijt = INijmBuia - [2.34]
For a body of revolution it therefore follows from [2.24], [2.22] and [2.27} that
Qi = (0405 + 0,0,)Q 1 + (9566, + dyeie; — le;e;ee)Q,
+ (Opee; + due;e, + Oyeje + 006, — deiejee)05, [2.35]
with
0% = Q, — 1BN [2.36]

a derived material constant. This tensor is of precisely the same form as the Q tensor in
[2.24], with Qf appearing in place of Q.

Though not strictly required in the subsequent rheological theory of axisymmetric
bodies, the material constants ‘Kl and 'K | arise in closely-related problems dealing with the
translational diffusion of anisotropic axisymmetric Brownian particles in homogeneous
shearing flows (Brenner & Condiff 1974). In particular, the translational diffusivities of the
particle parallel and perpendicular, respectively, to the axis of the body may be expressed in
terms of these (dimensional) particle material constants via the Stokes—Einstein relations
(Brenner 1967)

‘D, = kT/u,K,.'D, = kT/u,K,. [2.37a.b]

Accordingly, it has been deemed worthwhile to tabulate these translational resistance
coefficients in Section 3, as well as the material constant 'K , which is useful for calculating
the rotary diffusivity

'D, = kT/6V,u,K, [2.38]

of the particle about its symmetry axis. (The previous rotary coefficient D, = "D pertains
to rotation about an axis perpendicular to this symmetry axis.)

Inequalities satisfied by the material constants

Considerations of the fundamentally positive nature of the energy dissipation arising
from the presence of a suspended particle in an otherwise homogeneous shearing flow
furnishes lower bounds for certain of the material constants. These are derived in Appendix
G, the bounds being as follows:

K >0, 'K, >0, [2.39a, b]
K >0, 'K, >0, [2.40a, b]
Q, > 15, [2.41]

0, — 0, > 1/5, [2.42]
Q, + 0, > 1/5, [2.43]

0, + 05> 1/5. [2.44]
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Each of these inequalities are satisfied by all of the bodies whose properties are tabulated in
Section 3. :

3. MATERIAL CONSTANTS FOR VARIOUS AXISYMMETRIC BODIES

In this section values will be given for the fundamental material constants K . 'K, .'K
'K,, N, Q,, @, and Q, for prolate and oblate spheroids, spheres, spherical dumbbells of
various aspect ratios, and long slender bodies. From these we will obtain values for the
derived material constants Q%, B and r,, additionally required in the general rheological
theory.

Suppose that the suspended particle is neutrally buoyant, i.e. it is force free and couple
free. In this case it is found upon setting F; = L; = 0in [2.9] and [2.10], and utilizing [2.19]
for a centrally-symmetric body, that the translational and angular slip velocities are,
respectively,

U -1 =0, | (3.1
Q- o= %Bijksjkv (3.2]

in which [2.26] has been utilized. According to the former relation the center O of the body
translates with the velocity of the fluid in its proximity. With use of [2.27] the latter relation
'specializes for axisymmetric particles to the form

Q; — w; = —Be;jee,5;, [3.3]

wherein B appears as the only material constant.
Substitution of [3.1] and [3.2] into [2.11], and subsequent use of [2.34] yields the following
expression for the stresslet:

Aij = QlaSus [3:4]

in which Q7,, is given for an axisymmetric body by [2.36).

Spheroids

The five fundamental material constants for an ellipsoid of revolution may be immediately
obtajned by comparison of [2.21]-[2.24] with equations [3.16], [3.19] and [3.20] of Brenner
(1972a) (with @, Qy, Qy of that paper replaced by Q,, Q,, Q,, respectively). Consequently,
with r, = a/b [3.5]

the true or particle “axis ratio” of the spheroid (a = polar radius, b = equatorial radius),
there is obtained

— 2(r: +1)
LT 302 +ay) 3.6}
2(r3 - 1) (3.7]

- S(rpz% + a_L),
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Q= [3.8
LSy ]
_ 2 y
__1_ rP(qt + al) ﬁln_ .

% = Smi[ri% + o (al) 1} [3.10]
. r2
with 2= _’: 1(1 - B, [3.11a]
P
2
% = 3 (58 — 1), [3.11b]
p
x) = ﬁ(’i +2 - 3rp). [3.11¢]
2
"= p 2
b [3.11d)
" rz
o = (,_5—_"775[(2& + 1B - 3], [3.11¢]
" rj 2 (42 _
AJaTrRTE [2r; + 1 = (4r; — 1)B], [3.111)
~1
in which p= SO T (r, > 1), [3.11g]

- 2 172
rlry — 1)
cos”'r,

B = W (r, < 1). [3.11h]

The values r, > 1 and r, < 1 refer to prolate and oblate spheroids, respectively.
Use of [2.28b] in conjunction with {3.6] and [3.7] yields

-1
+1

~
S e

B =

[3.12]

~
TN

Since the particle axis ratio r, necessarily lies in the range 0 < r, < oo (being zero for a flat
circular disk and approaching infinity for a long needlelike object), it follows that B lies
in the range —1 < B < 1, whereupon

Bl =1 {3.13]

for a spheroid. Hence, from [2.29] it follows that

r [3.14]

€=r

p°
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whence the equivalent and true axis ratios coincide for a spheroid.
Finally, we obtain from [2.36] that

o _ _1_ zrl’q: _
B Cesrall o

wherein the identity o, = r,,(r,f - 1) Yo, — %,) has been employed.
The volume of a spheroid is

V, = (4n/3)ab’. [3.16]

In addition to these values, for the sake of completeness we note that (Brenner 1967)
'K, = 3—§—l—~ [3.17]

R = E(z‘lﬂ%} [3.18]

R, = 27;;1“—% [3.19]

Long thin prolate spheroids. In the limiting case where r, » 1, the material constants
previously given for the (prolate) spheroid asymptotically approach the following values:

r2

Y = ————p————w
K= Smar, 05 [3.20a]
rZ
N=— % .
5(In2r, — 0.5) [3-200]
2 6ln2r,
0, = 57 S—rjg [3.20c]
r2 2
= —————p——— —
Q: I5(n2r, — 15) © 5 [3.20d]
7
Q3 = m [3.206]
2
and B=1- 5 [3.20f]
rP
, _6In2r,
03 = 5T [3.20g]
2 2In2r
d 'K =Z— L,
an K, 3 372 [3.20h]
. 4na
t _ s .
K =2, —0s [3.20i]

JMF.,Vol.1,No.2 B
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- 8na

K. =0 3.20)
“ "2, 405 [3.201]

Spheres. In the special case of a spherical particle (radius = ¢}, we have that a = b = .
whence

r,=r,=1 [3.21]
The o integrals reduce to
o =o =2/3 o =a) =2/5 o =aof =4/1S [3.22a.b.c]
whereupon the preceding relations adopt the forms
'K, =1 N=0 Q,=1/2 Q,=0,=0, [3.23]
and
B=0, Q%=0. (3.24]
in addition to
'K, =1 'K =K, =énc [3.25)

Long slender axisymmetric bodies

Consider an axisymmetric body (possessing fore—aft symmetry) of length 2a and cross-
sectional radius b at its midpoint. Particular examples of such bodies are prolate spheroids,
symmetrical double cones, and circular cylinders of finite length, each of which is depicted
in figure 1. Denote by

r, = ab [3.26]

(a) Prolate spheroid

<> 0

(b) Symmetrical double cone

0 )

(¢) Circular cylinder

Figure 1. Slender bodies possessing fore- aft symmetry.
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the particle axis ratio for the body. A slender body is then defined as one for which
r,>» 1. [3.27]

Let the parameter ¢ be the distance measured from the midpoint of the body along its
symmetry axis, and rendered dimensionless with the length a. Thus, t lies in the range
—1 <t <1, wheret = +1 corresponds to the endpoints of the particle. Define a dimen-
sionless contour parameter ¢ = o(t) such that bg is the cross-sectional radius the particle
at the position t (¢ < 1) along its axis. The fore—aft symmetry property of the body is then
represented by the fact that a(t) = (—t). Moreover, by definition, g(0) = 1. As examples
we have that:

(I) for a spheroid,

g=(1-tH?, [3.28]

(IT) for a symmetrical double cone,

- 1—t for1>2r=>0, (3.29]
14t forO=t> —1;
(II1) for a circular cylinder,
oc=1 forallt. [3.30]

In the results to be cited, particles fall into two general categories—*sharp-ended” or
“pointed” bodies and “blunt-ended” bodies. Sharp-ended bodies are those for which:

(i) a(2) is a continuous function of ¢ in the interval —1 < < 1, [3.31a]
and
(i) a(—1) =a(+1) =0. [3.31b]

Spheroids and double cones are examples of such bodies, as are spindles too. Blunt-ended
bodies are those for which:

(iii) (1) is piecewise continuous in the interval —1 <1t < 1, [3.32a]
and

(iv) o(t) possesses, at most, a finite number of discontinuities in the
interval —1 <t < 1. [3.32b]

Circular cylinders are examples of such bodies.

As shown in Appendix B, the following asymptotic formulas, valid for r, » 1, apply to
both classes of bodies:

0, =2/5, [3.33]

4r}
3A(n2r, + K) [3.34]

Q3=0, [3.35]

Q,=
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'K, = 2/3, [3.36]
. dna
- . 337
K, In2r,+ C, 3]
. 8na
R o= e 3.38
Y 2,4+ C,+ 1 [3.38]
The quantities
330, 1=1¢2 o
K=_§+Zﬁlu4 H)dn [3.39]
1
A= o du. (3.40]
-1 .
and
[ 1 -
= 4 Inf - [34
C, 2+4Jln( Uz)dt [3.41]

are numerical constants for a body of given shape. The constant A also arises in the expres-
sion

V, = nab*A [3.42]
for the volume of the slender body.

General formulas for the remaining material constants differ, according as the body is
sharp- or blunt-ended. These are tabulated below for each of the two separate cases.

Sharp-ended bodies.

2 2
K, = L [E Ky @K Ks]. [3.43)
3K, Inr, (Inr,)
N L [@R - Ky @B3IK K5 [3.44]
SKy| Iy, (In r,)*
g:p1+14_ [3.45]
Fp In Ty
le*72_7(1_ 4 |- [3.46]
p rp In rp
The quantities
1
Kzz/\:f 2 dr [3.47]
-1
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4 \2 1 K,
= [— == - = 349a,b
N
are numerical constants for a body of given shape, as is the constant K too. The latter is
given by the expression

1

1
K; = —(1 +ln2+1ne)f ozdt+f
-1

-1

1

c’lnodt + f tE(t) dt, [3.50a]
-1

in which*

=27 S emlar+ T 2L emer Bsow
T 2J)ro_ t - TIdT 2J)ro0e. T—t|dT ' '
Here, 0 < ¢ « 1 is an arbitrary (small) positive parameter. The value of K; may be shown
to be independent of .

Blunt-ended bodies.

K, = 9;2 Er:r‘,(l + lf—:; + %ﬂ [5.51]
B=1-° 1;::35’ [3.54]

in which L is a numerical constant of O(1), which depends critically upon the precise shape
of the blunt ends of the body. As yet, this constant has not been calculated theoretically
for any bodies. However, from a series of experimental measurements (Anczurowski &
Mason 1968) of the equivalent axis ratio r, as a function of the particle axis ratio r, for a
series of circular cylinders of various aspect ratios (satisfying [3.27]), it has been determined
(Cox 1971) via [3.53] that

L~ 545 [3.55]

for a circular cylinder of finite length.

From the fundamental material constants already tabulated, one can calculate the value
of the derived material constart Q5 by use of [2.36] (as well as t from [2.25]). Calculated
values of the various numerical constants C; and K; for the three bodies displayed in figure 1
are tabulated in table 1. By way of confirmation of the general theory, it may be seen that

* For example, for a spheroid, ¢*(T) = | — T2, we obtain upon integration,

EN)=2lne+2t—tin(l —~ 3.
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Table 1. Numerical constants for various slender bodies.

Body Sharp-ended bodies Biunt-ended body
shape - ——— oo
Symmetrical Finite
Numerical Prolate double circular
constant spheroid cone cylinder
K,orA 4:3 2:3 2
- K 32 l —In2 (17/6) — In2
-Cy 12 —[In2 — (1/2)] (32) —In2
-K, 23)2In2 - 1) 1 —(2/3)In2 -
- K, In2 —(1/2) 2in2 1 -1In2
p 1 2[ 2 ~
~y 0 3/4H2in2 -1

with use of the coefficients presented in table 1 for the prolate spheroid, all of the asymptotic
values tabulated in [3.20] for the long thin prolate spheroid are reproduced by the present
theory .*

Dumbbells

As in figure 2, consider a dumbbell composed of equal spheres of radii ¢, joined by a thin
rigid rod of negligible hydrodynamic resistance, with center-to-center spacing 2/ between
spheres. Define the particle axis ratio as

r, = ljc. 13.56]

The case where the spheres touch (tangent-sphere dumbbell) corresponds to the value r, = 1.
For the general case where r, may lic anywhere in the range 1 < r, < oc, Wakiya (1971)
furnishes an analysis of the motion of such a dumbbell when suspended in a simple shearing

Figure 2. Spherical dumbbell.

* In making the comparison. note that {3.20a] for the spheroid may be expanded into the form

LV @) @3)n2 - 05

Inr, 4 inr, (inr,)?

which agrees asymptotically with [3.43] upon utilizing the value K, = —(In2 — 0.5) for the spheroid. Similar
agreement obtains for the material constant N.

r

2
r — P

In2 -05
1 —_———
K. 3|nr‘,[ Inr, +0
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flow. Bipolar and tangent-sphere coordinate systems are employed to solve the appropriate
low Reynolds number flow problem (cf. [2.6]-[2.8]) for this special flow.* As discussed in
Appendix C, it is possible to extract from Wakiya's analysis the material constants for a
dumbbell. This leads to the following values for the five fundamental rheological material
constants:

'K, = 2(a* + b?), [3.57]
N = a* — b, [3.58]
Q, = te,, [3.59]
0, = i(e; — e, [3.60]
05 = (e, — ey), [3.61]
as well as the following values for the derived material constants:
r, = a/b, [3.62]
= Zz—;:; [3.63]

(cf. [2.30]). Here, a?, b, e,. €, and e, are dimensionless numerical constants (Wakiya 1971),
tabulated as a function of r, in table 2} In turn, these lead to the values of the material

Table 2. Wakiya’s dumbbell parameters.

B* r, a? b? N e e;

0 1 0.74523 0.18978 47760 2.8636 2.3824
0.2 1.020 0.76423 0.19066 487 2.886 2.39
0.5 1.1276 0.78073 0.19514 5.405 3.0022 2.428
1.0 1.5431 1.3586 0.20942 7.745 3.3478 2.483
1.5 2.3524 2.6699 0.22521 13.651 3.6798 2.498
2.0 3.7622 6.1142 0.23576 28.399 3.8659 2.500
2.5 6.1323 15.251 0.24175 66.402 3.9478 2.500
3 10.0677 35.718 0.24513 166.559 3.9804 2.500
x x (3/8)r§ 1/4 (3/2)r§ 4 5/2

* The bipolar-coordinate parameter § is defined as § = cosh™'r,.

* Note that Wakiya's analysis exactly takes account of the hydrodynamic interactions among the two spheres
comprising the dumbbell. This is in contrast to previous approximate analyses of the dumbbell, where the spheres
were assumed to be so far apart (i.e. r, » 1) that hydrodynamic interactions among the spheres were regarded as
wholly negligible (Bird et al. 1971, Brenner & Condiff 1974). or were only taken into account to terms of lowest
order in the small parameter r, ! (Bird & Warner 1971, Stewart & Serensen 1972).

+Though not listed in the original tabulation of Wakiya (1971), the a® and b? values were kindly supplied to me
by Professor Wakiya, who, at my request, also furnished the more extensive and more accurate results cited in
table 2.

The limiting values of these parameters as r, — co were also furnished to me by Professor Wakiya, who obtained
them independently by both a “method of reflections™ expansion and an expansion of the exact, bipolar coordinate
solution.
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constants tabulated in table 3.* The values of Q, and r may be obtained from these via [2.36]
and [2.25], respectively.

Numerical values of the auxiliary material constants ‘K and 'R, as a function of r, may
be obtained from the bipolar-coordinate calculations of Goldman et al. (1966) for the
translational motion of two identical spheres in a quiescent fluid, moving parallel and
perpendicular, respectively, to their line of centers, when the spheres are each prevented
from rotating.t Values of 'K as a function of 7, may be obtained from the tabulation of
Kunesh (1971), derived from the solution of Stokes equations for the equal rotation of two
identical spheres about an axis coinciding with their line of centers.} A partial tabulation
of these results is presented in table 4.

Table 4. Auxiliary material constants for a dumbbell.

B A K, * K /12nct 'R /12met
00 10 090154 064514 072469
02 10201 090562  0.6474 0.7281

~ 05 11276 092504 065963 074565

1.0 1.5431 0.96752 0.70245 0.79957
1.5 2.3524 0.99050 0.76778 0.86015
20 3.7622 0.99766 0.83620 0.90859
25 6.1323 7 0.99946 0.89159 0.94216
3.0 10.0677 0.99988 0.93079 0.96404

© ®© 10 10 1.0

* These values were computed from equation [C.21] in Appendix
C by Professor Wakiya. They agree with the value tabulated by
Kunesh (1971), obtained from the table cited in the last footnote
at the bottom of this page.

t See the second footnote at the bottom of this page.

* Independent confirmation of several of these results for the limiting case r, = 1, where the spheres touch, is
provided by the work of Majumdar & O'Neill (1972). In our notation these authors give 'K, = 1,8704 and
T = (.5556 (i.e. N = 0.6667; cf. [2.25)). in close agreement with the values tabulated in table 3. From these values
we may also derive B = 0.59410 and r, = 1.9817 (cf. [2.28a] and [2.29]), also in close agreement with the cor-
responding results cited in table 3.

tIn the notation of Goldman et al. (1966), the expressions for these material constants are given by
'K, = 12nc|F*l, 'K, = 12nc|F*.
Numerical values of |[F*| are presented in tables 8 and 8A of these authors. Likewise, |Fi*! is tabulated in tables 1
and 2 of these authors. The limiting cases where the spheres touch (r, = 1) are treated separately by Majumdar &

O'Neill (1972), who obtain values of ‘&/12nc = 0.6451 and 'K, /12nc = 0.7243, in good agreement with the
limiting results of Goldman et al. (1966), cited in table 4 for r, = 1.

$ By symmetry, this solution is formally identical to that for the symmetrical rotation of a single sphere in
proximity to a free surface placed midway between the two spheres, for which numerical calculations are provided
by Kunesh (1971), based on the formula (Cox & Brenner 1967)

'K, = sinh®f 3 (—1)"* cosech’mp,
m=1

with § = cosh™! I/c. The limiting case where the spheres touch is solved separately by Cox & Brenner (1967),
Majumdar (1967), and Majumdar & O'Neill (1972).
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In utilizing these results it shouid be noted that the volume of the dumbbell 1s
V, = 8mc3. [3.64]

For the case of touching spheres. Nir & Acrivos (1973: see footnote on page 206} give an
independent tabulation of the material constants for the dumbbell. Relationships between
the constants appearing in their material tensors and ours are

t’i‘ =(a, + a))u. 'K, =a,/p. K, = (b, + by)i16nuq;.
'K, = b j16nuai. N = 3r,40npuai. t© = r/16nua}. B =2r b,
0, =/ 10V, Qs = ~lc, + 2015V, Q, = ¢y 10V,

in which p is the solvent viscosity, «, is the radius of each of the identical spheres comprising
the dumbbell. and V, = 8nu;'/3 is the volume of the dumbbell. Use of the tabulated
numerical constants a,, a,. b,. b,. ¢,. ¢5. ¢y and - furnished in their table 2 vields results
which agree with ours to at least three significant figures. However, the expressions given
for the material tensors R;; and R} in their equation [A.2] are in error. In their notation,
the correct expressions for these tensors should be

R;'il\ = —=r&pP Py + S PP}

Ry = rilewpip; + e pipid
where r, is the constant defined in their equation [A.3] and tabulated in their table 2. These
tensors differ from those reported by Nir & Acrivos (1973) by a minus sign.

Dumbbell composed of “non-interacting”™ spheres. When r, > 1. the two spheres com-
prising the dumbbell are so far apart that hydrodynamic interactions among them may be
neglected in the first approximation. It then becomes possible (see Section 11 of Brenner
& Condiff 1974, as well as Appendix D of the present paper) to perform an independent

calculation of the material constants, using known results for isolated spheres. In this
manner we obtain, for the “non-interacting”™ dumbbell,

K, = (34}, [3.65a]
N = (9200, [3.65b]
Q, = O(1. [3.65¢]
0, = —(3/10)r;. [3.65d]
0, = (9/40)r;. [3.65¢]
from which may be derived the following values of the secondary constants:
B=1. r/r,=0(1) Q5 =0() [3.65f, g. h]

These accord with Wakiya's “method of reflection” values, tabulated in table 3. However.
the more accurate values of the constants, @, = 1/2,r./r, = (3/2)1? and @4 = 3/10, given
in table 3, and specified in [3.65] merely by gauge symbols, cannot be calculated by con-
sidering the behavior of isolated spheres. Rather. they can only be calculated in numerical



RHEOLOGY OF A DILUTE SUSPENSION OF AXISYMMETRIC BROWNIAN PARTICLES 221

value by taking account of first-order interactions between the spheres, as was done by
Wakiya via the “method of reflections”.
- In addition to the above values, we also find for the “non-interacting” dumbbell that

'K, =1. 'K =12rc, 'K, = 12nc. [3.66a. b, c]

These derive, respectively, from Kirchhoff’s law (Lamb 1932) for the rotation of an isolated
sphere about an axis through its center, and from Stokes’ law for the translation of an
isolated sphere through a quiescent fluid.

Substitution of [3.65¢, d, €] into [2.24] yields*

Qiju = [Ojeie, + €56, + Oyeje, + 0,8, — (4/3)(5;;0,€, + oue;e))](1/2)Q + O(1), [3.67]
in which
Q = (9/20)r. [3.68]

Note that to terms of O(r?) the fourth order terms, e;¢;e, ¢, in the general @, ;, tensor in [2.24]
have vanished. This makes the “non-interacting” dumbbell suspect as a reasonably general
model of an axisymmetric body. Indeed [8.16b] (with h = 0), shows that a dilute suspension
of such bodies fails to produce a primary normal stress difference. Such atypical behavior
is not representative of that exhibited by axisymmetric particles in general.

“First-order” dumbbell. Going beyond the asymptotic values for 7, » 1 tabulated in
table 3, Wakiya (1972) has derived the following, more accurate, asymptotic values of the
coefficients a? and ¢;:

a* =2 + Gr, + 133 - eyt + 00, Y, (3.692)
eo=13ry + 3, + 47 — 5, + 00,7, [3.69b]

In conjunction with the values (cf. table 3)

b =1+ 0(r; "), [3.70a]
ey =4+ 0(r; %), [3.70b]
e, =3+ 0@, %), [3.70c]

this permits us to obtain analytical expressions for the fundamental material constants to
terms of at least O(1) in the aspect ratio r,.

For purposes of comparing these results with certain related results of Bird et al. (1971)
in Section 8, we will, however, compute the “first-order” material constants only to O(r,).
Following the notation of Bird et al., define the small dimensionless “interaction” parameter,
3 1

h=">

i3 « 1 [3.71]

1]
00| W
ks

* The @, tensor given here is not the same as a comparable tensor given in equation [9.27] of Brenner (1972a).
The apparent discrepancy is ‘satisfactorily resolved in Appendix D.
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Equations [3.69] may then be written correctly to terms of order r, as

e o) 3.72a]
A ' [3.72a]

2

3r;
- P 2
€ 20~ 2m) + O(1), [3.72b]

in which it has been noted that r,;,"(l + nh) + 0(1) = r,f(l —nhy" P+ 0() (n=1,2) to
the order of the approximation.
Equations [3.70] and [3.72] lead to the following values of the material constants:

N

r - P
K, = aiomt o(1). [3.73a]
N= o — 1 o) 3.73b
Y201 - hy ' [3.73b]
0, =%+ O(h"), [3.73¢]
0, =~ on) 3.73d]
27 o —am T OV [3.
3 2
05 = o7 O(h?), [3.73€]
and* L 1+ i[l — h + O(h?*) [3.73f]
B 3r§ )
rir, = (3/2)'% + O(h), [3.73g)
9r,;7‘
Q; = 00 7 + O(1). {3.73h]

The parameter to which the gauge symbols refer is h.
In addition to these first-order interaction values, it also follows that (Brenner 1964a)

I 8
/ N .74
1 63 + 0(n°) [3.74]

e
It
IS

)

L)

as well as (Happe! & Brenner 1965)
_ 12n¢

"1+ 2h

t

+ O(h3), [3.75]

* A considerably more accurate value of r,. derived from [3.62]. [3.69a] and [3.70a]. is

3\ 3 593
o B R e I N §
rp A2 8 1536 )

With use of [2.30] this gives rise to a more accurate expression for B than that tabulated in {3.73f].
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_ 12nc

t 3
and Ky =155+ 00 [3.76]

Circular disks

The material constants for an infinitesimally thin circular disk of radius b may be obtained
from the general results cited in [3.5]-[3.19] for an oblate spheroid, by letting the polar
radius a tend to zero. Since the volume ¥, of such a disk is zero, results for this case must
necessarily be presented in a slightly different form than for prior bodies. In connection with
their ultimate use in the basic rheological constitutive equation [4.27], and equations derived
therefrom, the appropriate forms for the various material constants are as follows:

'K, = (32/3)b, (3.77a)
#N = —n(16/15)b%, [3.77b)
#Q, = n(32/45)b>, [3.77¢)
#Q, = n(16/45)b°, (3.77d)
$Q; = —n(8/45)b>, [3.77¢]

in which n is the number of disks per unit volume. (This number density is related generally
to the volume V,, of a particle and to the volume fraction ¢ of suspended particles via the
relation n = ¢/V,,, in which ¢ and V, are both zero for circular disks.) Derived material
constants are

B= -1, (3.771]
r,=0, [3.77g)
r, =0, (3.77h)
T = (16/3)b3, (3.77i]
#Q% = —n(32/45)b>. [3.77])
Auxiliary material constants are
R = (32/3)b%, [3.77k]
'K, = 16b, (3.771]
'K, = (32/3)b. [3.77m]

4. RESUME OF DILUTE SUSPENSION RHEOLOGY THEORY
Consider a dilute, spatially uniform suspension of identical, rigid, force- and couple-free
particles (possessing fore—aft symmetry) suspended in a linear homogeneous shear flow.
Since the assumption of diluteness implies that the particles are far apart on the average,
hydrodynamic interactions among them may be neglected in the first approximation.
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The local velocity field in the neighborhood of each particle corresponds to the “un-
disturbed” flow [2.5]. Due to the collective effect of the disturbance created by all the par-
ticles in the suspension, this velocity does not, however, correspond to the mean local
velocity of the suspension itself, which quantity will be denoted by u. The mean velocity
gradient G in the suspension is then

G =Vu, (4.1

which can be decomposed into its symmetric and antisymmetric parts to give
S=4#G+ G"H =S 4.2
and A=-HG-GHY= A" [4.3]

as the mean rate of strain and mean vorticity dyadics. respectively, in the suspension. In
general, these are related to the corresponding undisturbed dyadics. s and 4. defined in {2.2]
to [2.3], by the relations (Brenner & Condiff 1974)

S=s5s+0(). A=4i+ O¢) {4.4a.b]

in which ¢ is the volume fraction of suspended particles.
To terms of the first order in ¢, the mean deviatoric stress T in the suspension may be
calculated from the relation (Brenner & Condiff 1974)

T = 2u,G(S + 3¢<A>) + 0(¢?), [4.5]
with
S=S/G. A=A/G. [4.6a.b]

and A = A/G, in which G is some characteristic shear rate. The mean value denoted by the
angular brackets represents an orientational average. defined generally by the expression

W' = pwte) e de [47]

for any function ¥ = y(e) dependent upon the orientation e of the axisymmetric particle.
Particle orientation is represented here by the body-fixed unit vector e lying along the
symmetry axis of the axisymmetric body. Here, f° = f“(e) denotes the orientational distrt-
bution function, and d%e represents a scalar element of surface area drawn on the unit
sphere. Integration is over all orientations. This probability density is normalized to unity:

ﬁf"dze =1 (4.8]

Equation [3.4] for the stresslet A applies only when rotary Brownian motion is absent.
Inclusion of the rotary Brownian movement modifies it to the following form (Brenner &
Condiff 1974):

Aij = Qs — Nl + o)), (49]
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provided that the suspended particles are each force free. Here, for axisymmetric bodies
{Brenner & Condiff 1974),

Q¥ = -DexV,f° [4.10]

is the angular velocity induced by the Brownian motion, with D, the rotary diffusion
coefficient for rotation of the axisymmetric body about a transverse axis, and V, the
orientational gradient operator. It will be supposed that the suspended particles are couple
free, so that the angular velocity w° induced by the external couples is identically zero.
The orientational distribution function satisfies the conservation relation (Brenner &
Condiff 1974)
(4]
aL+Ve-j"=0, [4.11]
ot
where 1 is the time. In this expression the rotary flux vector j° = j%e) is given by the consti-
tutive relation

=19+ Q" xe, [4.12]

with € the hydrodynamic angular velocity, given by [3.3] for couple-free axisymmetric
particles. In the steady state, f° therefore satisfies the second-order partial differential
equation (Brenner & Condiff 1974),

V2f° =D 'V,.[(A-e + Bs-e — Bs-eee)f°], [4.13]

with V2 = V, . V, the angular portion of the Laplace operator on the unit sphere. Consider
the analogous function f, in which the undisturbed quantities 4;; and s;; appearing in the
above equation are replaced by the mean values A;; and S;;, respectively, i.e. f satisfies

Vif =iV, [(B"'A-e + S-e — S-eee)f], [4.14]
subject to the normalization condition (cf. [4.8])
gﬁf d’e = 1. [4.15]
Here,
A = BP, [4.16]
wherein
P = G/D, [4.17]

is the rotary Péclet number; A therefore represents a weighted Péclet number. In view of
[4.4] it follows that

S =f°+0(¢). [4.18]
Equation [4.10] may now be written as

Q¥ = QP + 0(¢), [4.19]
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wherein
Q% = -DexV.f [4.20]
With use of [4.4a] and [4.19], equation [4.9] may now be expressed in the form
A = Aj; + 0(o). [4.21)
wherein
Ajj = QhuSu — G~ Ny Q. 14.22]

Substitution of [4.21] and [4.18] into [4.5] therefore gives
T = 2u,G(S + $¢<(AD) + 0(?). [4.23]

The angular brackets appearing herein are defined generally as (cf. [4.7]).

W) = ¢~~/t(e)_!‘(e)d2e. [4.24]
with / the distribution function satisfying [4.14] and [4.15]. The material tensors Q7 and
N, are given generally for axisymmetric particles by [2.35] and [2.22]. while the Brownian
angular velocity Q" is given for such bodies by [4.20]. Use of the expression [4.22] for A
therefore enables us to determine that

(A" = 20,8 + Q,1S:Ceed> + 20%(S - (ee> + (ee>-S)
—(30, + 40%)S:(eeee> + 2NB. '(3ee) — I\, [4.25]
with I the idemfactor. The term involving the fourth orientational moment may be
expressed in terms of second moments via the general theorem (Brenner & Condiff 1974)

S:ceeeed = L[S + B 'A) - (ee> + (ee> (S — B7'A)] — 27 '(3(ee> — 1. [4.26)

derived from [4.14].

In this manner we may obtain an alternate expression for the mean dimensionless
stresslet (A’ involving only the second orientational moment {ee). Substitution of the
resulting expression into [4.23] then yields, correctly to terms of the first order in ¢.

T 00,8 — 50,5 Cee) + (ee) .S — JIS:(ee))
_3B7130, + 405)(A - Cee) — (eey+ A)
+5.743Q, + 40;)(3<ee> — I). [4.27]

The isotropic terms in this expression (i.e. the terms multiplied by I) could be suppressed
since they are physically irrelevant for an incompressible suspension. They have been re-
tained, however, at least temporarily, to render the deviatoric stress traceless, i.e.

rT=01T=T, =0, [4.28]

which is the commonly used convention. That this expression is indeed traceless follows
in general from [4.1], since both S and (A possess zero trace. (The latter is a consequence
of the fact that A4;; = O (Brenner 1972a).)
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As follows from [4.24], the second. orientational moment is given by

(ee) = § eef(e) d2e. [4.29]

Subject to the requirement that f be positive, continuous, single-valued, and satisfy the
normalization condition [4.15], the solution of [4.14] possesses a unique solution for a
prescribed mean velocity gradient G in the suspension, the solution being of the functional
formf = f(e;S,A;B, ). In consequence of this, the second orientational moment possesses
the general finctional form

{ee> = function(S, A; B, A). [4.30]

Equation [4.27] furnishes the general rheological equation of the suspension of axisym-
metric particles to O(¢). In consequence of [4.30], this equation will generally be highly
nonlinear. In general, apart from the parameters u, and ¢, the material constants appearing
in this rheological constitutive equation are completely determined by the five fundamental
particle constants, 'K, , N, Q,, Q, and Q; (and the auxiliary constants B, Q% and D, derivable
from these). Since these constants depend only on the shape of the suspended particles, but
not their size, the same is true of the deviatoric stress. Values of these constants for a wide
variety of axisymmetric bodies are tabulated in Section 3. :

It is demonstrated in Appendix G that the time rate of mechanical energy dissipation D
per unit volume of the flowing suspension is given by the expression

D =T:S, [4.31]
and possesses the property that
D =0, [4.32]

in which the equality sign holds only when S = 0. Here, T is the mean deviatoric stress,
given by [4.27). ‘ ‘

Itis sometimes convenient to define a viscosity function n in terms of the energy dissipation
by means of the relation

T:S
n= 35:S [4.33]

even when the suspension is non-Newtonian. With use of [G.49] this yields the following
lower bound on the viscosity of a suspension of rigid axisymmetric particles:

1>l + @) > 0. [4.34)

This generalizes‘an earlier result (Brenner 1958) which was only shown to apply in the
absence of Brownian motion. Equation [4.34] may be expressed alternatively in terms of the
intrinsic viscosity (cf. [5.15]) as

m>1L [4.35]

JM.F,Vol. |,No.2-C
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In the case where the suspended particles are spherical in shape (cf. [3.23]). [4.27] correctly
reduces to Einstein’s result.
T = 2¢S. [4.36]
with n = pll + 3¢), [4.37]

irrespective of the type of shear flow. The rotary Brownian motion is obviously without
effect, as was to be expected.

5. AXISYMMETRIC EXTENSIONAL FLOWS

Perhaps the simplest application of the preceding rheological theory is to the case of
uniaxial flows (Trouton 1906), generated—at least in principle—by the extension or com-
pression of a cylindrical thread of fluid. With (x,, x5, x;) a system of Cartesian axis fixed
in space, consider the incompressible flow field u in the suspension,

u, = ——%le. “2 = -—"%GXZ. Uy = Gx3q [51]

arising from the application of a tensile or compressive force along the x; axis. The
parameter G represents the fractional rate of elongation of the thread along the x, axis.
Thus,

G > 0 for elongational flows, [5.2a]
G < 0 for contractile flows. [5.2b]
From [4.1] to [4.3] and [4.6] it follows that
S = 1(3i4i; — D), [5.3]
and A=0, - [54]

in which (i,, i,, i) are a right-handed system of unit vectors along (x;. x,, x3). Equation
[5.4] is a manifestation of the irrotational nature of the flow.

The unit orientational vector e may be represented as a unit radial vector in a system of
spherical-polar coordinates (r, 0, ¢):

e = i, sin 0 cos¢p + i, sinOsin ¢ + iz cos 0. [5.5]

Substitution of [5.3] and [5.4] into [4.14] furnishes the differential equation governing the
orientational distribution function. Subject to the normalization condition [4.15], this
equation possesses the solution (Brenner & Condiff 1974)
1(0) = K~ exp (34 cos? 9), (5.6]
with K = K(A) the normalization constant
K(&) = 4nE texp(EAD(E) for 4 > 0, [5.7a]

K(¢) = 4n for 4 =0,
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K() = 2n¥2¢Yerf & for 1 <0, : [5.7b]

4
in which D) = exp(—{z)f exp (z%)dz [5.8]
0
is Dawson’s integral (Abramowitz & Stegun 1968; see also [H.41]), and
¢
erfé = 2n"/2f exp(—z3)dz [5.9]
V]

the error function. In these expressions,
& =134 (5.10]

The parameter 4 may be positive or negative, depending upon the algebraic signs of B
and G. For example, in the case of spheroidal particles, [3.5] and [3.12] show that B is
positive for prolate spheroids and negative for oblate spheroids. Algebraic signs for G are
as indicated in [5.2]. Equations [4.29], [5.5] and [5.6] combine to yield (Brenner & Condiff
1974)

Cee) = 3[I — i3i; + (iziy — DF(E)), [5.11]

. . 1 1
in which F(¢) = KT(@ - 5—6—2 for A >0, [5.12a]
F(¢&) =% fori=0, [5.12b]
Fe) = - SR it [5.12¢]

28 g'lZEerf¢
Introduction of [5.3], [5.4] and [5.11] into [4.27] gives

T — 2u,GS

oG 5[20, — 3(F + §)Q, + 3271(F — $(3Q, + 403)]S (5.13]

for the deviatoric stress. Equivalently,
T =248, [5.14]

where, if 1 is expressed in the terms of the intrinsic viscosity [#], defined generally as

..
= l .
=30 g,

[5.15]

then [#n] is the quantity

[n] = 3[2Q; — 3(F + HQ, + 347 (F — (3Q, + 4Q,)). [5.16]

Equation [5.14] shows that with respect to axisymmetric extensional or compressive
flows, the suspension behaves like a Newtonian fluid possessing a shear-dependent (ie.
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G-dependent) viscosity coefficient ». In the case of spheroidal particles [5.14]-75.16]. agree
identically with prior results (Brenner 1972a).*

For the limiting case where the Brownian motion is dominant, it follows from either
[5.12a] or [5.12c] that F ~ (1/3)[1 + (4/5) + O(;%)] as ~ — 0+. Hence. in this limit, the
“zero-shear” intrinsic viscosity 1s

o = 5@, — Q, + 205, 517!

in which the subscript zero denotes the limiting value as P = G/D, — 0. From [5.11]. in
this limit {ee> ~ I/3, corresponding to a random distribution of orientations.

In the opposite case of weak Brownian motion, or equivalently infinite elongational rate
(|Gl — =), |4 = . The algebraic sign of 2 depends upon those of B and G. As 2 — + =
F~1-—(4/3)27" whence

]

['7]1%1 = S(Ql — Q,). [518]
On the other hand, F ~ —~(2/3)." ! as ~ - — . whence
-, =50, —3i0,. [5.19]

As discussed by Brenner (1972a), these two limits. in which rotary diffusion is effectively
absent, correspond to preferential alignments of the symmetry axes of the axisymmetric
particles relative to the axis of tension or compression of the uniaxial flow [5.1].
Figures 3a and 3b are plots of (5] vs the dimensionless “shear™ rate G’D, for spheroidal
particles of various aspect ratios r,. For oblate spheroids (0 < r, < 1) rheological behavior
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Figure 3a. Variation of intrinsic viscosity with clongation rate for prolate spheroids of various axis
ratios suspended in an axisymmetric uniaxial extensional flow.

* In making the comparison, note that « as defined by Brenner (1972a) is only 3.4 of the value. ~ = BG'D,.
defined in the present paper. Note also that the corresponding expressions for # {3x in Brenner 1972a) differ
superficially in their appearance. since the theorem {4.26] was not employed to simplify the analysis of Brenner
(1972a). However, the two forms can be shown to be identical.
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Figure 3b. Variation of intrinsic viscosity with elongation rate for oblate spheroids of various axis
ratios suspended in an axisymmetric uniaxial extensional flow.

is of the shear-thickening type, in that [#] increases monotonically as G is varied from — oo
to cc. The same behavior obtains for prolate spheroids whose axis ratios lie in the range
1 <r, = 10473 (Clarke 1973). However, for those prolate spheroids characterized by
10473 < r, < oo, behavior is of the shear-thickening type only up until some value of the
dimensional shear rate, whose value depends upon r,. Beyond this shear rate the behavior
is of the shear-thinning type.

For a “non-interacting” dumbbell (cf. [3.65)), [5.16] reduces to

(n] = gri(F + b, [5.20]

where r, is the aspect ratio of the dumbbell, defined in [3.56], and A = G/D, in the present
case, since B = 1. The agreement of this result with that of Bird et al. (1971) for the particular
case of extensional flows (G > 0) has already been pointed out (Brenner 1972a).

The quantity n defined by [5.14] is identical to the viscosity function defined more generally
by [4.33]. Thus, the general inequality, [] > 1 (cf. [4.35]), applies in the present circum-
stances. In particular, with use of [2.41]-[2.43], {5.16] may be demonstrated to satisfy this
inequality.

6. PLANE EXTENSIONAL FLOWS

The two-dimensional flow field
uy = —3Gx;, u, =4Gx,, u; =0, [6.1]

is the two-dimensional (biaxial) counterpart of the axisymmetric (uniaxial) extensional flow
[5.1]. This irrotational planar flow can be experimentally realized at the center of a “four
roller” apparatus (Taylor 1934, Giesekus 1962b, Chaffey et al. 1965). As before, G may be
either positive or negative, as in [5.2]. Now, however, the question of the algebraic sign of G
is trivial, since G changes sign under the transformation 1 — 2 and 2 — 1. Hence, in contrast
to the results of the prior section, the algebraic sign of G is here devoid of physical significance.
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In present circumstances,
S = (1/2)(i,i, — i,i)), [6.2]
and A=0. [6.3]
The orientational distribution function for this case is (Brenner & Condiff 1974)
10, 6) = K™ 'exp (—14sin? 0 cos 2¢), [6.4]

with angles (0, ¢) defined as in [5.5]. Here, K = K(|A]) is the normalization constant
2n panm
K= f f exp (— 44 sin? 0 cos 2¢) sin 8 d6 d¢, [6.5]
(1] 0

which yields on integration (Brenner & Condiff 1974)
KA = 212721 o GIADT -y 4(314]), [6.6]

with I, the modified Bessel function of the first kind of order v.
It is readily shown by symmetry arguments that all “off-diagonal” terms in (ee) are
identically zero in the present case, whence {ee) is necessarily of the form

(eey = ijija, + iiha, + isiza;, [6.7]
in which
a, = <{ee,> = {sin? Hcos? ¢, [6.8a]
a, = {eye,> = (sin? @sin? ¢>. [6.8b]
ay = {eye;) = {cos? 0, [6.8¢]

where, from {5.5],
(€1, €5, e3) = (sin B cos ¢, sin 8 sin ¢, cos b).
The coefficient a, is not independent of the other two since it is a consequence of [6.8] that
ay =1 —(a, + a,). [6.9]

Calculation of the second orientational moment therefore requires evaluation of only a,
and a,.

In place of a, and a, it is convenient to introduce two other parameters, g(4) and h(z),
defined by the expressions

g = —2a, — a,) = —2<sin? 0 cos 2¢>, [6.10]
h = 2(a, + a,) = 2¢sin? 0. [6.11]
In terms of these,
a, = —3(g — h), [6.12a]
a, = 3(g + h), (6.12b]

as =1 — ih. [6.12¢]



RHEOLOGY OF A DILUTE SUSPENSION OF AXISYMMETRIC BROWNIAN PARTICLES 233

From the definition of the bracket integral in [4.24], we find upon utilizing the expression
for fin [6.4] that

2r pm
g= - %f f sin? 0 cos 2¢ exp (—44 sin? 0 cos 2¢) sin 0 d6 d¢, [6.13]
V] 0
and
2 2n pn
h= Ej f sin 0 exp (—4+4 sin’ 0 cos 2¢) sin 6 d0 d¢. [6.14]
(4] ]
The first of these integrals may be evaluated by observing from [6.5] that the integral

is merely —4dK/d/. Utilization of the expression for K in [6.6], and use of the relation
A= |Alsgni (wheresgni =1for A >0, and sgni = —1 for 1 < 0), then gives

L aGIADIZ o BIAD + I_,/aGIADT o GIAD

A) = A
8(4) = (sgn A) I, 4 GHADT - o(1A))

[6.15]

in which I'(x) = dI(x)/dx. These derivatives may be obtained from the recurrence relation
I =4(1,,, + I,_,). Evaluation of h is discussed in Appendix E, the result ultimately
obtained being

11/4(%M|)1- 1/4(%'M|) + 13/4@‘"{“1— 3/4(%|'1|)_

h(A) =
@ T oG 3 o314

[6.16]

Tabulated values of these modified Bessel functions are available (Luke 1962).
The g and h functions may be expanded for small |4 by means of the modified Bessel
function expansion (McLachlan 1955)

X |— x? x*
W) = o v it e oo+ ] (I «< 1,

in conjunction with the following identities (McLachlan 1955) relating to the factorial
function:

nz

T+ 2T - 2) = =——.

Iz =(z - Nz~ 2I'(z - 2),
zZlz) =T + 2).
This eventually gives
g(h) = &4 — 5i%54° + 0(4%) (4] « 1), (6.17a]
and

B =4 + A% + 06 (A« 1), [6.17b]
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Expansions for large || may be obtained from the asymptotic expansion of the modified
Bessel function (McLachlan 1955)
)] (x| » 1),

8 1
g(A) = 2sgn i — 3 + 0(72) (A > 1), [6.18a]

R P
RPN T

thereby obtaining

Wiy =2 |4|+0(ﬂ) (13> 1) [6.18b]

From [6.7] and [6.12] we have in general that

ee> = aglixiy — iyiy) + Gh — DG, + ixiy) + (1 — AL [6.19]
For |4 « 1, this then yields
<eed = 3[1 — 3154% + OGN + F5A[1 — 53542 + 00 (iyi, — iyiy)
+ 735421 + 00D (i,iy + iyi,), [6.20]

correct to terms of O(4%). (With use of [6.2]-[6.3], this agrees identically with the general
result for small 4, cited in [7.3].) In the limit where 4 — 0, this gives (ee> = i1, corresponding
to a random distribution of particle orientations.

For {4] » 1, [6.18] and [6.19] combine to yield the following asymptotic result:

<ee>=i,i1[ (=4 + {1 —4H(— )] Iﬂl]+i2i2[H()+{l"4H‘) 1]

14|

L. 2
—l3l3m+0

)
|- [6.21]

A

wherein H(x) is the Heavyside unit function,

1 for x>0,
H(x) = [6.22]
0 forx <0,

which is equivalent to H(x) = (1 + sgn x).

We note from both [6.20] and [6.21], as well as from the more general equation [6.19].
that (ee) enjoys the property of being invariant under the simuitaneous set of transforma-
tions,

1-2, 21, Ai—- -1 (ie. G-> —QG) [6.23]

Clearly, such must be the case since S is invariant under this set of transformations (and
A =0).
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In the limit where {i| » oc, corresponding to the absence of Brownian motion, [6.21]
reduces to

(eed ~ Qi (4> +o0), [6.24a]
(ee) ~iji; (A - —0) [6.24b]

The first of these relations corresponds to the fact that when BG > 0, and the particle
motion is governed by purely deterministic mechanical principles, the axisymmetric body
adopts a unique terminal orientation with its axis of symmetry oriented along the x, axis
(Brenner 1972c), so that e = i, at steady state. A similar interpretation applies to [6.24b]
for the case where BG < 0 (Brenner 1972¢).

Rheological properties may be calculated from [4.27]. In the present case this yields

T = i1i1T1 + iziz‘[z, [6.25]
upon suppressing the physically irrelevant isotropic term IT;,, that would otherwise have
appeared. (Thus, tr T # 0 in the present case; cf. [4.28].) The normal stress differences,
defined by

Ty =Ty —Ts3, 13=Ty T, [6.26]

are most conveniently expressed in terms of parameters n and o defined as

1, =Glo — 1), 1,=Glo + 1) (6.27]

in which
n=p, + 080, — 3h()Q, + 647 'g()(3Q, + 4Q,)], [6.28a]
o= —Bou,lgNQ, + 2474 — 3n(1)} (30, + 4Q3)], (6.28b]

with values of g and h given generally by [6.15] and [6.16].
The symbol n defined here accords with the general definition of the viscosity function
set forth in [4.33]. Accordingly, the viscosity n given by [6.28a)] necessarily satisfies the

inequality [4.34], as can also be shown directly by use of [2.41]-[2.43].
Rheological results are most conveniently expressed in terms of the intrinsic viscosity

n] = (1 — wo)/du,, [6.29]
and the intrinsic “normal stress” function

(6] = o/¢u,. [6.30]
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For |4| « 1, [6.17] and [6.28] combine to yield
(] = [nlo — (£272100(2Q; + Q3) + O(:%). [6.31]

and
6] = (2 T)Q5 — Q5) + O3, [6.32]

in which [n], is the intrinsic viscosity at zero shear rate, given by [5.17]. These limiting
results may also be derived independently as a special case of [7.4].

In the opposite limit, where |4 > 1. [6.18] combines with [6.28] to give
] = (5/4040Q, — 3Q,) + O(4™ 1), [6.33]
and

(0] = —(15/4)0, sgn /i + O(i] ). [6.34]

Consequently, the intrinsic rheological properties attain limiting asymptotic values as the
Péclet number is increased indefinitely. These limiting results apply in the absence of
Brownian motion, where purely mechanical considerations (Brenner 1972c) lead to the
conclusion that, at steady state, the particles are all aligned parallel to either the x, or x,
axes (cf. [6.24]).

For spherical particles (cf. [3.237 and [3.24]) it follows that # = u(1 + 3¢) and ¢ = 0.
whence — 1, = 1, = 5G. Substitution into [6.25] with use of [6.2] and [4.6a] then correctly
yields Einstein’s result, [4.36] and [4.37].

Graphs of [n] and [g] are presented in figures 4a, 4b, Sa and 5b for prolate and oblate
spheroids of various axis ratios r, as a function of the dimensionless deformation rate
P = G/D,. Behavior of the oblate spheroids (figure 4b) is of the “shear-thinning” type, in
that the intrinsic viscosity decreases monotonically with increasing deformation rate G.
In contrast, for all r, less than about 15, prolate spheroids (figure 4a) manifest “shear-
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Figure 4a. Variation of intrinsic viscosity [} with elongation rate for prolate spheroids of various
axis ratios suspended in a two-dimensional biaxial extensional flow.
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Figure 4b. Variation of intrinsic viscosity [5] with elongation rate for oblate spheroids of various
axis ratios suspended in a two-dimensional biaxial extensional flow.

thickening” behavior, wherein the intrinsic viscosity increases monotonically with increas-
ing deformation rate. However, for particle axis ratios exceeding about 15, rheological
behavior is of the shear-thickening type only at the smaller deformation rates. Beyond some
critical shear rate (which depends upon r,) the behavior reverts to the shear-thinning type.
This mixed mode of behavior displayed by prolate spheroids is similar to that pointed out
by Clarke (1973) for prolate spheroids in uniaxial extensional flows, as is discussed in

Section 5.
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Figure 5a. Variation of normal stress function [a] with elongation rate for prolate spheroids of
various axis ratios suspended in a two-dimensional biaxial extensional flow.



238 HOWARD BRENNER

100_ T T LRI T 7 |I1Hl L V!IH T 7 l]lll
- 7p=1/100 3

N 1750

10 - 1/25
F "1 1710 3

X{
\\Qx\

- | ]

Normai Stress Function, [0']
( \K_

©

(@]
r*
im

0001 sl i 11]11:1 1 11111111 i 11[11‘
0.1 1 10 100 1000
Rotary Péclet Number, P = 6/0,

Figure 5b. Variation of normal stress function [¢] with elongation rate for oblate spheroids of
various axis ratios suspended in a two-dimensional biaxial extensional flow.

7. GENERAL SHEAR FLOWS. SMALL PECLET NUMBERS

For values of |A| « 1 the solution of [4.14] and [4.15] correct to O(4%) is (Brenner &
Condiff 1974)

f=(4n) 1 + 2F,(e) + 22F,(e) + A Fy(e)] + O(2%), [7.1a]

in which
Fi(e) = (1/2)e-S-e, [7.1b]
F(e) = (1/8)(e+S-e)> — (1/60)tr (§82) — (1/12B)e - J (S)-e. [7.1¢]

Fiyle) = (1/48)(e-S-e)* — (1/120)tr (S*)e-S-e — (1/630) tr (S
—(1/30B)(e-S-e)e-J (S)-e — (1/120B)e- J (S?)- e
+(1/72B%)e - J3(S) - e. [7.1d)
Here, for any dyadic D, D" is the dyadic defined as
D"=D:D.----D (ntimes). [7.2a)
The dyadic J,, corresponds to a dimensionless Jaumann derivative,
J D =D-A-A-D, [7.2b]
with A as defined in [4.6], whereas
J3D) = J,{J (D)} [7.2¢]
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denotes a multiple Jaumann derivative. The scalar operator
trD=1LI:D [7.2d]

represents the trace of the dyadic D.
From [4.29] this yields (Brenner & Condiff 1974)
<eed = (1/)] + (/15)S + (12/630)[68% — 21 tr (§%) — 7B~ 1J,(S)]
+(43/56,700)[608> — 48S tr (§%) — 201 tr (§3) — 135B~1J (8%
+105B72J%(8)] + 0(1*%). [7.3]

Use of this relation in [4.27] leads to the following expression for the mean deviatoric
stress in the suspension:

T = 2u,GS + ¢u,G[T, + AT, + A°T, + 0(A%)], [7.4)
with Ty =2(5Q, — Q, + 205)S, [7.5a]
21T, = 12(Q5 — Q,)8? — TINJ(S), [7.5b]

630T, = 6Q,[ —108® + Str(8?) + 5B~ 1J,(8H)] + SN[7B~1J2(S) - 6J,(8%)]
+20,[2083 — 168 tr (8% — 15B~1J (8%)]. [7.5¢]

All isotropic terms have been suppressed in these expressions (so that tr T 5 0), and [2.36]
employed to simplify the final result. Equation [7.4] represents the explicit rheological
constitutive equation for a dilute suspension of axisymmetric particles, valid for the case
where |A| « 1. It is, of course, highly nonlinear.

Equation [7.5] can be expressed in a somewhat simpler form by repeated application of
the Hamilton—Cayley theorem and extensions thereof (Rivlin 1955), according to which

-D*+ 2,0 - 2,D+ 2,1=0
for any dyadic D. Here, Z;, 2, and Z; are the scalar invariants of D:
P, =D, 2, =3itrD - tr(D?], 2, =detD.
This leads, for example, to relations such as
§% =IdetS + 1Str($?),

and A = 1A tr (A2

Despite the fact that the orientational distribution function [7.1] is known to O(43) it is
only possible in general to compute the rheological properties to 0(4?), as in [7.4]. This
behavior derives from the nature of the last term on the right-hand side of [4.27). That A~!
appears as a coefficient in this term shows that a calculation of the mean deviatoric stress
to O(4") presupposes that {ee) and, hence, f(e) be known to O(A"* ) (n = 0,1,2,...). It is
only for bodies characterized by the property 3Q, + 4Q; = 0 that this comment is invalid.
Of the nonspherical bodies discussed in Section 3, this condition is met only by the “non-

interacting” dumbbell (cf. [3.65d] and [3.65¢]). For this particular case it is possible to
explicitly calculate the term of O(43) in [7.4] for the dumbbell. We shall not, however, write
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down this more exact result here, since it has already been given elsewhere (Brenner &
Condiff 1974) to this order.
In the limit where 4 = 0, [7.4] reduces to

T = 248, (7.6
in which
n=ull + ¢(5Q, — Q, + 205)]. [7.7]

Thus, at low shear rates or, more precisely, for 1 — 0, the suspension displays Newtonian
behavior, the viscosity coefficient being given by [7.7]. Alternatively, in terms of the intrinsic
viscosity [#], defined generally in [5.15], it follows that

(nlo = 501 — Q, + 20, [7.8]

in which the subscript “zero” refers to the limiting value at zero shear rate.

Equation [7.8] is identical to [5.17]. derived for the special case of uniaxial extensional
flow, which is irrotational. That the two results are identical is, of course, a consequence of
the fact that [7.8] applies to any homogeneous shearing flow, irrotational or not.

For the special case of spheroidal particles, possessing values of the material constants
tabulated in {3.6]-[3.10], equation [7.8] accords exactly with the analogous “zero shear™ (i.e.
dominant Brownian motion) result of Simha (1940, 1945), Scheraga (1955). Their computa-
tions were, however, performed only for a simple shearing flow, rather than a general
homogeneous shearing flow, as in the presentation calculations. Moreover, they employed
scalar energy dissipation techniques to compute the intrinsic viscosity, in contrast to the
general dynamical tensorial techniques utilized here. For r, » 1, the values tabulated in

[3.20] for a long thin prolate spheroid make

2
[le = 2 3 ! ] o 17.9]

15In2r, — 05 2, ~ 15|15

In 2r,',) ’

in agreement with the result of Kuhn & Kuhn (1945), derived using scalar energy dissipation

methods for the case of a simple shearing field. Analogous results may be derived for any

slender body by use of the values of Q,.Q,, Q; for such bodies, tabulated in Section 3.
For the case of “non-interacting” dumbbells, {7.8] becomes

r2, 17.10]

p

i

(nlo =

(where r, is given by [3.56]), a well-known result (Brenner 1972a).

8. SIMPLE SHEAR FLOW

Simple shearing flows are of special interest in rheological applications. Consider a
suspension subjected to the shear flow

u =i, Gx,, [8.1]
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Figure 6. QOrientation of a body of revolution in a simple shear flow.

taking place in the x; — x, plane, as in figure 6, G being the shear rate. Dimensionless
shear and vorticity dyadics for this flow are

S = (1/2)(iyi, + iriy), A = (1/2)(isi, — iyi,). [8.2a,b]

Substitution of [5.5] into [4.27] gives rise to the mean deviatoric stress,
T = 2yG[4(i,i, + Li,)] + iy, 7, + isi,1,. [8.3]

We have suppressed the physically-irrelevant isotropic term IT;; that would otherwise
have appeared in this expression. Hence, the deviatoric stress in [8.23] possesses a nonzero
trace. In this expression,

n=Ty,/G [8.4]

is the viscosity function, whereas t, and t, are the first and second normal stress differences
of Coleman et al. (1966), defined generally by [6.26). In [8.3],

[n] = 5Q; — %#Q,(sin? 0) — §B7'(3Q, + 4Q3)(sin” 6 cos 2¢)

+42471(3Q, + 4Q;)(sin? Osin 2¢), [8.5]
[t,] = S[2B~' — 1)Q, + B~*Q3]{sin? Osin 2¢)

~ 15271(3Q, + 4Q5)(1 — 3(sin? 0> — L(sin? 6 cos 2¢), [8.6]
[t,] = =5[3(B~ ' + 1)Q, + B~Q4]¢sin? #sin 2¢>

— 15471(3Q; + 403)(1 — ¥(sin® 8 + $(sin? 0 cos 2), [8.7]

wherein [7] is the intrinsic viscosity, defined in [5.15), and

L2 [8.8a, b]

[t,] = hm ———» [t,] = ¢ °¢#

°¢
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are the “intrinsic normal stress differences”. In these expressions,
2n am
{sin? @) = f f sin? 0 f(6, ¢) sin 0 d0 d¢, etc. [8.9]
(¢} 0

Relations similar to [8.5]-[8.7] have been given by Hinch & Leal (1972) for the special
case of spheroidal particles.* However, their expressions involve the additional moments,
{sin® O sin 2, (sin* Osin? 2¢> and {sin* § sin 4¢). These may, however, be expressed in
terms of the three lower-order moments appearing in [8.51-[8.7] by means of the following
identities, derived from the general theorem [4.26] applied to the shear flow [8.2]:

{sin* Bsin 29> = ¢sin? Osin 29> — 24~ 1(3¢sin? B> — 2), [8.10a]
{sin* fsin? 2¢> = (sin? 0> + B~ 1{sin? O cos 2¢> — 647 '(sin? O sin 2¢), [8.10b]
{sin*Osin4¢) = —2B '¢sin® Osin 2¢p)> — 1227 ¢sin? 0 cos 2¢>. [8.10c¢]

The quantity n defined by [8.3] accords with the general definition of the viscosity function
in [4.33]. Accordingly, {4.35] shows that the intrinsic viscosity [n], given in present circum-
stances by [8.5], can never be less than unity. Inequalities [2.41]-[2.44] may be invoked to
provide an independent demonstration of the fact that (5] > 1, irrespective of the shapes
of the suspended particles.

Dominant Brownian motion
For the case where |4] « 1, it follows from [7.3] and [8.2] that

(eed = 3 + F5iliiy + iriy) + g36A (31 — 7B Hiyi; + (1 + TB™ Niyi, — isi;y)
— 37800473 + 35B7 )(ii; + i) + O(4%), [8.11]

in which T = i,i, + i,i, + i3i;. Use of [5.5] in conjunction with some elementary trig-
onometric 1dentities then gives for this case,

(sin? 0> = 2 + Agi? + OUA. 8.12a°
(sin? Osin 205 = L[i — 14s(3 + 35B 243 + O(A%)], [8.12b]
{sin®@cos2¢p> = ~sB7 1A% + O@4*). [8.12¢]

Substitution of these into [8.5]--{8.7] yields

] = 1o — 1260(12Q, + 60, + 35B~'N)A2 + 0(3*), [8.13a]
[t,] = [3(Q3 — Q) — &N14 + 0(), [8.13b]
[12] = [3Q5 — Q) + §N1A + 0(33), [8.13¢]

with [n], given by [7.8].
For the spheroid these reduce to previously known results (Brenner & Condiff 1974).

* If we identify their coordinates (x, y, z) as our (x,, x,, X3} then their angles (6,, ¢,) are identical to our angles
(0, ¢). However, their (1,, 1,) are our (1,, 1,). defined in {6.26].
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For the “non-interacting” dumbbell they adopt the forms*

(1] = 3r2[1 — #%P? + O(P*), [8.14a]
[t =0, [8.14b]
[1,] = %r2P + O(PY), [8.14c]

where P = G/D, is the rotary Péclet number. These results are, in fact, well known (cf.
Brenner & Condiff 1974, and earlier references cited therein).

“First-order” dumbbell in simple shear flow

Substitution into [8.5]—[8.7] of the material Q constants given by [3.73] yields the general
expressions

_ 32 (n
[n] = 1= h TT};} + O(1), . [8.15a]
ZP ﬂ
[t = 8(1__,1)ok”z}Jrc)(l), [8.15b]
riP (O]
(2] = [n] = 8(1p— h) m} + 0(1), (8.15¢]

with the terms in curly brackets given by

'I"'Is__il_h ) 02 __2 in2 @ si
kT, = 2(1 — 2h)((sm 8> + {sin® 0 cos 2¢)) AT {sin* @sin 2¢>, [8.16a]
108 h . .
Ek/’gl‘—i,f = T’T(T—_.‘Zh_)(l — 3(sin? 8) — 1(sin? O cos 2¢)), [8.16b]
& 18 2 108 ., ‘
nokTAl,f (1 — 2h)(sm fsin2¢)> + ( 2h) (sin*fcos2¢>.  [8.16¢]

These expressions are valid for the case where r, » 1, i.e. where the small interaction
parameter h defined in [3.71] satisfies the condition h « 1. The parameter to which the
gauge symbol O in [8.15] refers is h. In these equations, P is the rotary Péclet number,
P = G/D,, in which (cf. [2.33] and [3.73a)),

kT(1 — h)

2mp,cl? [8.17]

, =

* The normal stress difference [7,] for the non-interacting dumbbell is identically zero to all orders in P.

Since the deviatoric stress for non-interacting dumbbells can be calculated to O(1%) (cf the comments in the
paragraph following [7.5]). it is possible to write down a somewhat more accurate expression for [t,] than is given
in [8.14c], namely

9 3
(] = 55 ,,[P i +O(P’)]

JM.F.,Vol.I,No.2 D
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Equations [8.15]-[8.16] agree identically with the results of Stewart & Serensen (1972),
when converted to equivalent notation.* That two such vastly different methods of derivation
should yield precisely the same results is remarkable.

For the case where P « 1, we find upon setting B = 1 and 4 = P in [8.12], and intro-
ducing those results into [8.16], that

n—1ns . 1 —h L ) . 3 h B 19 ) ,
mkTh, 1 = 2’7)[1 00 TOP =Sl Tl TOPY| B8
g 12f ok ,

kT2 = 3s\1 = /Ut T+ OP) [8.18b)

® B 6{1—h 19 5 . 6 h ,
nkTA 5(1 - Zh)[l “e30l TOP ’] 5oy LHOPIL (B8]

in exact agreement with Bird & Warner (1971), upon replacing their i,k by P/6.

Slender bodies and dumbbells characterized by B = 1. Arbitrary Péclet numbers

The partial differential equation governing the orientational distribution of particles
immersed in the simple shear flow {8.2] is, from [4.14] and [5.5], governed by the relations

s‘irlﬁ;' %(sin 0%) + sir112 ; (((piz - Plisvi%? (_:5(10 sin 0) + é(ﬂﬁ) : [8.19)
subject to the normalization condition
f - f/ sin 6 d6 de, [8.20]
0 0
with f = f(0, ¢: B, P), in which P = G/D,, and
6 = 1B sin 20 sin 2¢, [8.21a]
$ = 1(1 + Bcos2¢). [8.21b]

are the appropriate dimensionless components of the hydrodynamic angular velocity of
the particle.

* In effecting the comparison one must utilize the following notational equivalences:

Stewart & Serensen (1972),

and Bird et al. (1971) [ ¢ (x, 1. 2) Tyx Ter — Ty LN K
This paper 0 (2 — ¢  (x5.X,. —x3) =Ty, —(Tp—Ty) =Ty, —Tss) G
Stewart & Serensen (1972). 4

and Bird et al. (1971) L r 1, n, B2 Ox? n
This paper 2] ¢ H, 3p/8nc® 1, =T, —Tyy 1,—1, =Ty, - Ty 1/6D,
with D, given by [8.17]. Moreover, in our notation, J = | in the Stewart & Serensen (1972) and Bird et al. {(1971)

references.
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Equations [3.46), [3.54], {3.65] and [3.73] reveal that, for all the “slender” bodies (including
spherical dumbbells with first-order interactions) whose properties are tabulated in
Section 3,

B—-1 forr,» 1. [8.22]
Upon setting B = 1 in [8.21], equation [8.19] adopts the form

1 ( " of 1- 0 Isingcos¢ o

sin 0 90 tGnZo

201 " sin?@ 6¢2 Sin 0 (sm fcosBf) + —(cos ¢f)] [8.23]

o

where, now, f = f(6, ¢; P). This equation is identical to the steady-state equation of Bird &
Warner (1971); (cf. the notational equivalences in the footnote on page 244), numerical
solutions of which are provided over the complete Péclet number range, 0 < P < x. by
Stewart & Serensen (1972). The latter’s results may therefore be employed to obtain values
for the three goniometrical factors, {sin? @), (sin? fsin2¢> and (sin? 6 cos 2¢), as a
function of P, for the special case where B = 1. In conjunction with {8.5]-[8.7], such
information may be employed to calculate the complete rheological properties of dilute
suspensions of various slender bodies (i.e. bodies for which r, > 1) suspended in simple
shearing flows.

Stewart & Sarensen do not directly tabulate the goniometric factors. Rather, they tabulate
numerical values of the three viscometric functions in [8.16] at various values of P for the
special cases where h = 0 and A = 3/8. When h = 3/8, simultaneous solution of [8.16a] to
[8.16¢] for the goniometrical factors, yields

¢(sin? B = [162(25P? + 486)]![SP*810 — 108X — 5P?Y) + 162(324 — 2P*Y — P*Z))],

2

P’Y
{sin? O cos 2¢) =2 — TR 3¢sin? 0,

{sin? Bsin 2¢) = E -— (sm2 0 cos 2¢,

in which X, Y and Z, respectively, represent the left-hand sides of [8.16a, b, c] at h = 3/8.
Use of the tabulated values of X, Y and Z presented by Stewart & Serensen (1972), in con-
junction with the above three equations, then leads to the values of the goniometrical
factors noted in table 5. These were confirmed by computing X, Yand Z at h = 0 from
[8.16] using the values in table 5, and comparing the results so obtained with those tabulated
by Stewart & Serensen at h = 0

In the particular case of the “first-order” dumbbell, the large Péclet number values
tabulated in table S are limited in their range of applicability to circumstances in which
the dimensionless interaction parameter h is sufficiently small to satisfy the inequality
(cf. [9:22))

h™!» PY3 51,

Thus, Stewart & Serensen’s (1972) use of the value of h = 3/8 (corresponding to the case
where the spheres touch) may lead to significant errors in the theoretical predictions at the
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Table 5. Goniometric factors for bodies characterized by

B=1*
P (sin? 0> (sin? @ cos 2¢> ¢sin® Osin 2¢)
0 0.66667 0.00000 0.00000
0.6 0.66723 —0.00395 0.03957
0.75 0.66754 —0.00612 0.04916
1.5 0.67000 —0.02311 0.09376
20 0.67231 —0.03886 0.11943
3.0 0.67788 —0.07592 0.15981
4.5 0.68700 —-0.13328 0.19684
6.0 0.69569 -0.18394 0.21557
9.0 0.71055 -0.26154 0.22825
12.5 0.72436 ~-0.32450 0.22840
15 0.73237 —0.35423 0.22548
20 0.74568 —0.40938 0.21782
25 0.75619 —0.44680 0.21001
30 0.76465 -0.47573 0.20276
40 0.77816 —-0.51879 0.19042
50 0.7886 —-0.5499 0.1804
60 0.7967 ~0.5738 0.1722
90 0.8151 —0.6232 0.1541
120 0.8274 —0.6547 0.1418
180 0.8435 —-0.6944 0.1255
300 0.866 -0.741 0.107
420 0.876 —0.765 0.096
600 0.889 —0.791 0.086

Pt 1-0974P7'% —1+1796P° 1 0.727p 17

* The corresponding goniometric factors for the case B= — 1
may be obtained directly from the values tabulated herein bv
means of the transformations noted in equations [8.26].

+ See Appendix F.

larger Péclet numbers, even apart from the fact that a first-order hydrodynamic interaction
theory would be unlikely to yield correct rheological results for small separation distances.

1t should be emphasized that the results cited in table 5 apply to any axisymmetric body
for which B = 1, and is not limited to dumbbells composed of distant spheres. When B is
not exactly unity, but is near to it, the analysis of Section 9 (cf. {9.12] and [9.19]) shows that
the larger Péclet number values tabulated in table S are valid only when

(1 — B~ Y2 » PY3 » 1, [8.24]

in which the goniometric factors are those tabulated in table 5.

Circular disks and other bodies for which B = — 1. Arbitrary Péclet numbers

As can be verified by direct substitution of [8.19]-[8.21] governing the orientational
distribution function remain invariant under the set of simultaneous transformations,

B - —B, [8.25a]
00, [8.25b]
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¢ —(n/2) + ¢. [8.25¢]
Hence, Stewart & Serensen’s numerical solution for the case B = 1 may be utilized for the

case where B = —1 by replacing the goniometric factors in table 5 as follows:
{sin? @) — (sin? 6), [8.26a]
{sin? @ cos 2¢> —» —{sin? § cos 2¢), [8.26b]
{sin? @ sin 2¢> — — (sin? @ sin 2¢). [8.26¢]

From [2.29] it is seen that B = —1 is equivalent to

r,=0, (8.27]

which is the value appropriate to an infinitesimally thin circular disk (cf. [3.14] and [3.15]).
Substitution of the material constants cited in [3.77] into [8.5]-[8.7] leads to the following
expressions for the three viscometric functions appropriate to a dilute suspension of
circular disks of radii b suspended in a simple shear flow:

'I"'Ta_g'_é s .2 __é il __3_ ] :
b 5[4 5 {sin* 8) 3 {sin* 0 cos 2¢) P {sin* @sin 2¢) [8.28a]
T

. Py . §_.__§.2 _1_2
1 Gnb® —9[<sm fsin 2¢) +P(1 2(sm > 2<sm fcos2¢>] |- [8.28b]

T2

_ 16 s 3 3, ., 1 .,
aGnb’ 3[-2@"1 fsin 26> + P(l 5 (sin” 6) + 3 (sin? 6 cos 2¢>)]~ [8.28¢]

in which the goniometrical factors are those derivable from table 5 via [8.26]. Here, n is
the number of disks per unit volume of suspension. The relation A = — P for circular disks
has been employed in the derivation, in which the rotary diffusion coefficient is

D, = 3kT/32u,b>. [8.29]
Goniometric factors for the general case

Scheraga et al. (1951, 1955) numerically solved equations [8.19]-[8.21] governing the
orientational distribution function for axisymmetric bodies immersed in a simple shear
flow, for values of 0 < P < 200 and for B lying in the range 0 < B < 1 (ie. 1 < r, < 00).
Though Scheraga et al. (1951, 1955) had in mind only spheroidal particles, characterized
by axis ratios r, defined by [3.15], their results may, in fact, be applied to axisymmetric
bodies of any shape. This can be done by observing that r, = r, for spheroids. Hence, if we
merely reinterpret their r, as being r, for a general axisymmetric particle, then—in view of
[2.29] and [2.30], relating r, to B—they have, in fact, actually solved the general system of
equations [8.19]-[8.21] for these more general bodies.

The three goniometrical factors {sin? @ sin 2¢), {sin? 6 cos 2¢> and (sin? #) (hereafter
denoted by B, y and 4, respectively) as functions of r, and P, required in our rheological
calculations, are not given explicitly by Scheraga et al. Rather, they are contained implicitly
in their streaming birefringence (Scheraga et al. 1951) and intrinsic viscosity (Scheraga 1955)
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calculations, from which they may be extracted by means of the procedure described below.

For the phenomenon of streaming birefringence, Scheraga et al. (1951)* tabulate values
of the extinction angle y = y{r.. P} and the “orientation factor™ F = F(r,. P). These two
parameters are related to the goniometrical factors f and 7 via the relations

7 1 7
21 -y = atan B
or. equivalently.
—tan 2y = B/, [8.30]
and
An = 2nen” g, — g,)F.
in which

Fo 4 g 8311

is the orientation factor. Here. (n/4) — y is the angle between the isocline and the principal
strain axis, An is the difference in index of refraction along the two principal axes of the index
of refraction tensor, ¢ the volume concentration of solute particles, # the mean index of
refraction of the solution, and g, — g, the optical anisotropy factor for the solute particles.

For x > r, > 1 (i.e. 1 > B > 0} it can be shown that 7 < 0 and > 0 for all P. Hence.
from [8.30] and [8.317 we find for this case that

{sin® 0sin2¢> = F sin 2y, [8.324]
{sin? fcos 2¢> = —F cos 2y, [8.32b

valid for r, > 1. Using the tabulated results of Scheraga er al. (1951) for this case. giving F
and y as functions of », and P. we have calculated values of the two goniometrical factors
from [8.32]. These are tabulated in tables 6a and 6b as functions of r, and P. for < >r, = I.
Values of these two goniometrical factors for 0 < r, < 1 (i.e. —1 < B < () may be derived
from this tabulation via the transformations indicated in [9.4].

Values of (sin? #sin2¢) and {sin’ O cos 2¢> at r, = x (i.e. B = 1) may be compared
with those tabulated in table 5, derived from the independent calculations of Stewart &
Serensen (1972) in connection with the rheological properties of dumbbell suspensions. In
general, the agreement is excellent for P < 60, thereby providing strong confirmation of the
accuracy of both sets of numerics. As indicated by Scheraga et al. (1951), the values of
and F for P > 60 are of uncertain validity, whence this same uncertainty attaches to the
values of the goniometrical factors in tables 6a and 6b beyond P = 60.

* The quantities here designated by the symbols r,, P, F and B are denoted in Scherega et al. (1951} as p. x. f and
R. respectively.
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Numerical values of the remaining goniometrical factor {sin* 0 as a function of r, and P
(for cc > r, = 1)can be obtained from Scheraga’s (1955) tabulation of the intrinsic viscosity*
of prolate spheroids as a function of these parameters, in conjunction with tables 6a and 6b.
In particular, from [8.5] we have that

(sin? 0y =221 3(1 +54&) (sin? 0 sin 26 —% 403 4n)

39, BP\ 30, 30, 150,

For r, > 1, values of {sin®  sin 2¢> and {sin? 6 cos 2¢> appearing on the right-hand side
of this relation are available as functions of r, and P in tables 6a and 6b. Values of @, Q,,
Q; and Q3 and B as functions of r, may be obtained for prolate spheroids (for which r, = r))
from [3.8]-[3.15]. Equation [8.33] then enables {sin* 0 to be calculated in terms of r, and P.
The results of such a calculation are tabulated in table 6¢c. In view of the transformation
indicated in [9.4] these same values of {sin? 8> apply if r, is replaced by 1/r, in the table.
Hence, this furnishes the goniometric factor {sin? #) over the complete range of equivalent
axis ratios, 0 < r, < oc, at least for |B| < 1. An independent check of the validity of the
transformation [9.4] was made by a comparable calculation of {sin’ 6% using Scheraga’s
(1955) tabulation of the intrinsic viscosity of oblate spheroids (0 < r, < 1). Results sub-
stantially identical to those tabulated in table 6¢ were obtained by this procedure, generally
to within a few units in the last significant figure.

The values of {sin? 8> in table 6¢ at the larger values of r, ought to be comparable to
those in table 5 at B = 1 (r, = oo), which derive from the dumbbell analysis of Stewart &
Serensen (1972). In general, the agreement between the two independent sets of (sin? ) is
quite good, again providing confirmation of the numerics of both sets of authors.

Yet further support for the general accuracy of the values tabulated in tables 6a, 6b and
6c derives from the asymptotic analyses of Hinch & Leal (1972) for P > 1, discussed in
Section 9.

Values of the goniometric factors in tables 6a. 6b and 6¢c may be utilized to compute the
variation of intrinsic viscosity and normal stresses with rotary Péclet number for any
axisymmetric particles immersed in a simple shear flow. This requires use of [8.5]-[8.7] in
conjunction with the Q and B values for any of the bodies characterized in Section 3. In
this manner, numerical values of the intrinsic viscosity function 3], and of the dimensionless
normal stresses. Z; = [t;]P (i = 1,2).

L, = t/éu,D,. L, = t/éu,D,. [8.34a.b]

I+

- [8.33]

) {sin® 0 cos 2¢)> —

were calculated as functions of the dimensionless shear rate P = G/D, for both prolate and
oblate spheroids of various aspect ratios r,, the results being cited in tables 7a, 7b, 7c and
8a, 8b, 8c. Results for the intrinsic viscosity agree, of course, with those of Scheraga (1955),

* In Scheraga's (1955) notation, the intrinsic viscosity is denoted by v, rather than [5]. as in the present paper.
Moreover, his spheroidal integrals. J, K, L, M and N, are related to our Q values by means of the following relations:

J+K=50,-20,) L=5Q +0%. M=50,. N=30B"4Q;~- 0%

These relations, in conjunction with [8.10b], show that Scheraga's (1955) general expression for the intrinsic
viscosity of a dilute suspension of spheroids (cf. his equation {9]) is identical with our equation [8.5].
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since the goniometric factors used in their computation were derived, in part, from Scheraga’s
(1955) tabulation of [n] vs r, and P. The normal stress results cited in the tables have not
previously been available over the complete spectrum of Péclet numbers. Some of the
results in these tables are also presented graphically in figures 7-12.
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Figure 7. Variation of intrinsic viscosity with shear rate for prolate spheroids of various aspect
ratios suspended in a simple shear flow.
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Figure 9. Variation of the second normal stress difference with shear rate for prolate spheroids of
various aspect ratios suspended in a simple shear flow.

At sufficiently low rates of shear these suspensions display Newtonian behavior, in that
the intrinsic viscosity, [n], say, is sensibly independent of the shear rate. and the normal
stresses are effectively zero. Since the intrinsic viscosity decreases monotonically with
increasing shear rate, the general rheological behavior of these suspensions is of the shear-
thinning type. As the rate of shear is increased indefinitely, the intrinsic viscosity ultimately
approaches an asymptotic value, [5],, (see tables 9a and 9b).
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Figure 10. Variation of intrinsic viscosity with shear rate for oblate spheroids of various aspect
ratios suspended in a simple shear flow.
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Figure 11. Variation of the first normal stress difference with shear rate for oblate spheroids of
various aspect ratios suspended in a simple shear flow.
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Table 9a. Limiting values of the three viscometric functions at infinite shear rate
for prolate spheroids.

Ty ['I]r _(zl)x (}:2)1
1 2.5000 0.00000 0.00000
2 2.5695 0.51826 5.1612
3 2.6836 1.5523 24.178
4 2.8010 29354 66.092
5 29184 4.5850 142.06
7 31375 8.5585 44921
10 3.4366 15.858 1539.6
16 39296 34.518 8026.6
25 4.6208 70.824 39,672
50 7.6823 21224 497,980

Table 9b. Limiting values of the three viscometric functions at infinite shear rate
for oblate spheroids.

! [n]. —(Zy, (4,
1 2.5000 0.00000 0.0000
2 2.5659 0.76932 3.5249
3 2.6507 3.1300 13.296
4 2.7239 7.5432 31.339
5 2.7828 14.571 60.094
7 2.8675 38.804 159.69

10 2.9403 109.74 451.96
16 29977 43776 1800.9
25 3.0287 1650.1 6759.3
50 3.1768 13.135 53.351

The primary and secondary normal stress differences are of opposite algebraic signs.
The magnitudes of both increase monotonically from zero as the shear rate is increased,
eventually attaining asymptotic values, (£,),. and (Z,), . at an effectively infinite rate of
shear (see tables 9a and 9b).

In general, the “exact” values of the viscometric functions cited in tables 7 and 8 at small
Péclet numbers compare favorably with the asymptotic expressions that may be derived
for these quantities from [8.13], namely

] = [n)o — FlrJP? + O(P*) [8.35a]
I, = —Fr)P? + 0PY [8.35b]
Z, = F(r,)P?* + O(P*) [8.35¢]
with [n], given as a function of r, by [7.8], and
F,(r) = 1755B*(12Q, + 605 + 35B™'N), [8.36a)
Fi(r) = BEN — 3(Q5 — Q))}, [8.36b]

Fy(r) = BN + 3(Q5 — Q,)]. [8.36¢]
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These demonstrate that the viscosity » attains a constant limiting valu¢ at P = 0, whereas
the normal stress differences 1, and.t, vanish in this limit. ‘

In the opposite limit, where P » 1 (and, simultaneously, P > r? + r‘3) the gomomcmc
factors required .in [8.5]-[8.7] may be obtained from table 10 in the next section. The
limiting ‘values, [n],,, (£,), and (Z,), . of the viscometric functions thereby obtained for
spheroids at infinite shear rate are tabulated in tables 92 and 9b.* As the shear rate G is
increased indefinitely, the conditions that P >» 1 and P » r} + r, 3 will always be fulfilled
eventually. Hence, the asymptotic results cited in tables 9a and 9b, which derive from the
“weak” Brownian motion analysis of Section 9, show that the viscosity and normal stress
functions each attain nonzero limiting values at infinite shear rate. Indeed, a slightly more
accurate version of [9.10] shows, at least for the case where r, » 1, that these limits for
spheroids are

P —0315—————l 15 [8.37a]
. S
Eo = 70 7, —13) (8.37b]
r4
(Z2)e = 2 - [8.37¢]

4(In2r, — 1.5)

Comparison of the asymptotic results of tables 9 with the “exact” values cited in tables 7
and 8 at P = 60 reveals that the infinite shear rate asymptotic limit is approached only
very slowly as the Péclet number is increased, especially for the extreme aspect ratios
r, » 1 and r, « 1, respectively, appropriate to prolate and oblate spheroids.

It is of interest to compare the intrinsic viscosity of a suspension composed of (touching)
spherical doublets with that of the corresponding singlet suspension at the same solids
volume fractional concentration. (In making the comparison it should be noted that when
the spheres touch there exists no relative rotation or translation of the two spheres in a
simple shear flow (O’Neill & Majumdar 1970), so that they behave like a single rigid body.)
The intrinsic viscosity in the singlet case is, of course, given by Einstein’s relation as
[n] = 2.5. By contrast, from [8.5], tables 3 and 10, and [8.12], the intrinsic viscosities of the
doublet suspension at zero and infinite shear rates are, respectively, [1], = 3.58 and
[7]e = 3.02. The effect of including such particle-particle interactions is thereby to increase
the resistance of the suspension to shear.

9. SIMPLE SHEAR FLOW. LARGE PECLET NUMBERS. |B| < 1.

By far, the majority of the theoretical rheological calculations reported in the literature
pertain to the case where the rotary diffusion is dominant over the shear, ie. P= G/D, « 1

* On the.other hand, when P >» 1, but r? » P » 1 (or 7,73 » P » 1), corresponding to the “intermediate” case
discussed in Section 9, the appropriate values of the three viscometric functions may be obtained from [9.16) to
[9.18] in conjunction with [9.15].
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(Kirkwood 1967, Bird er al. 1971). This is the case discussed in Sections 7 and 8. Only
recently have rigorous asymptotic techniques (Hinch & Leal 1972) been developed for the
opposite case, where P > 1. Thus far, these methods have only been applied to the case of
spheroids. However, with virtually no additional effort they may be applied to almost any
axisymmetric particle, in particular those for which |B| < 1. Thus, the asymptotic results
of Hinch & Leal (1972) are rendered applicable to such bodies by the simple expedient of
replacing their particle axis ratio r, by the equivalent axis ratio r,.

The situation for which |B| > | (and P > 1) requires a different asymptotic analysis, and
will be discussed in Section 10. All the bodies discussed in Section 3 possess the common
feature that |B| < 1, whence most of the important applications lie within the purview of
the asymptotic analysis which follows.

The asymptotic solution of [8.19]-[8.21] for the case where

P>»1 19.1]

subdivides naturally into two separate classes: (i} the “weak” Brownian motion case,
characterized by

rP+ 1 < P, [9.2]
and (i) the “intermediate™ case, characterized by

r2+r 3> Pl [9.37

The “weak™ Brownian motion case

Asymptotic results for this situation, correct to terms of O(P™!), are easily abstracted
from the results of Leal & Hinch, which pertain to the special case of spheroids. In par-
ticular, the three goniometric factors,* required for use in [8.5]-[8.7], are tabulated by
Hinch & Leal (1972) and Leal & Hinch (1973) as a function of r, (or B) and P, for the case
of large P. These numerical values, being derived directly from the general equations
[8.19]-[8.21] via definitions of the goniometric factors of the form [8.9] and the definition
of r, in [2.29], apply to any axisymmetric body for which |B| < 1. Hence, the applicability
of Hinch & Leal’s tabulation is not limited to spheroids.

Their tabulation is reproduced in table 10 for the range | <r, < ¢ (1e. 0 < B < I).
Comparable results for the range 0 < r, < 1 (i.e. —1 < B < 0) may be obtained from
these by means of the set of transformations (cf. [8.25]-(8.26]),

r, = 1/r, (i.e. B—> —B), (9.4a]
(sin? 65 — (sin® 8, [9.4b]
{sin? 0 cos 2¢> — — {sin? O cos 2¢), [9.4c]

* In addition. Hinch & Leal (1972) tabulate values of {sin* 8sin 2¢>. (sin* 0sin? 2¢> and (sin* 0sindg>.
However. in view of [8.10], these extra goniometrical factors are superfluous. The tabulated values of these
quantities may, however, be utilized to examine the internal consistency of their tabulation. A few scattered checks
of this nature revealed reasonable internal consistency.
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Table 10. Numerical values of the goniometric factors to O(P~!) for the “weak”
Brownian motion case [9.1}-{9.2] as;a function of the equivalent axis ratio in the

range 1<7, < c(0sBs *

r, {sin’0) (sin?6 cos 2¢> P{sin?0sin 2¢)
1 , 0.667 0.0000 0.0000
1.05 0.66, —0.0194 0.1159
2 0.690 ~0.2716 2.1653
3 0.727 —0.4186 49557
4 0.758 —~0.5136 8.6551
5 0.784 —-0.5810 13.302
7 0.823 —0.6718 25.487
10 0.862 —0.7530 51.090
16 0.905 ~0.8366 12892
25 0.936 —0.8918 312.55
50 0.968 —-0.9388 1244.68
100 0.986 —0.9578 4994.81
© "~ 1.000 - 1.0000 ~(1/2)r?

* Values of the goniometrical factors in the range 0 < r, < 1 (-1 < B < 0) may
be obtained from these by replacing r, by 1/r, and by changing the algebraic signs
of {sin?0 cos 2¢> and P{sin®0 sin 2¢).

{sin? @'sin 2¢> - —(sin? @sin 2¢).

265

[9.4d]

Confirmation of the numerical accuracy of the goniometric factors presented in table 10
is provided by the numerical results cited in tables 6a, 6b and 6c. If attention is confined to
the case where r, lies in the range co > r, = 1, then for P = 60 and 200, say, the inequalities
[9.1] and [9.2] may be expected to apply to r, values near unity, viz, r, = 1,2,3,..., the
expected error becoming larger as one proceeds to the larger values of r,. In table 11 we

Table 11. Comparison of the “exact™ and approximate values of the goniometric factors for the “weak”

Brownian motion case, [9.1] and[9.2].

{sin*@> —~ (sin?B cos 2¢) {sin?@ sin 2¢)
“Exact”  Approx. Per cent “E*act” Approx. Per cent | “Exact”  Approx. Per cent
table 6¢ table 7 error | table 6b  table 7 error | table 6a table 7 error
r, P =60
1 0.667 0.667 0 0 0 0 0 0 0
2 0.692 0.690 0.3 0.266 0272 23 0.0348 0.0361 3.7
3 0.725 0.727 03 0.396 0419 5.5 0.0698 0.0826 18.3
4 0.748 0.758 1.3 0.465 0.514 10.6 0.0986 0.1443 46.4
P =200
1 — — — 0 0 0 0 0 0
2 — — — 0.2716 0.2716 0.0 0.0108 0.01083 0.0
3 — — — 04154 0.4186 0.8 0.0235 0.0248 5.5
4 — — — 0.5021 0.5136 21 0.0358 0.0433 21.0
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list the exact, Scheraga et al. goniometric factors for several values of r, near unity, repro-
duced from tables 6a, 6b and 6c, as well as the (approximate) asymptotic Hinch & Leal
factors, derived from table 10. Also listed are the percentage errors incurred by these
approximate values.

Agreement between the approximate and exact values is quite good for those values of r,
nearest to unity. As anticipated, the discrepancy increases with increasing r,. The reasonable
agreement at the smaller values of r, strongly supports the inherent accuracy of both the
Scheraga et al. results and those of Hinch & Leal. Moreover, the quite good agreement at
P = 200 for the smaller values of r, suggests that the disclaimer by Scheraga er al. about the
uncertain validity of their results at P = 200 is unduly cautious, at least at these small r,
values.

In addition to the values tabulated in table 10, Hinch & Leal (1972) and L.eal & Hinch
(1973) also derive the following asymptotic formulas, valid for r, > 1 (i.e. B — 1).*

(sin? @) =1 — 1.792 + 0(—1)- [9.5]
r? re
{sin?fcos2¢> = —1 + 3.0524 + O(r—lz-) [9.6]
g 1[ 72 P
{sin® B sin 2¢> = Bl + 0 | + O| =51 9.7

From [9.2], these asymptotic results apply when
P35, > 1. [9.8]

These analytical relations agree well with the values tabulated in table 10 at the larger
values of r,.

The analogs of [9.5]-[9.7] for r, « 1 {i.e. B —> —1) may be obtained from the above via
the set of transformations [9.4]. These will apply when

P37 > 1. [9.9]

In conjunction with [8.5]-[8.7], table 10 may be employed to calculate rheological
properties for circumstances in which the inequality [9.2] applies. (See tables 9a and 9b
for the case of spheroids.) Alternatively, asymptotic analytical expressions for these proper-

* Leal & Hinch (1973) also give the next term in the asymptotic expansion of [9.7] in inverse powers-of P as
rs 1 rHt
Ze | 0.47694 - =,
+P2[0476 +0(r)]+O(P4)

e
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ties may be derived when the more stringent inequalities [9.8] or [9.9] hold. For example,
in the case of long thin prolate spheroids (cf. [3.20] and [3.14]), we eventually find from
[9.5] to [9.7] that*

[n] = 0315l T + o(;z) [9.10a]
[t = _4ln ( ) (P:,) [9.10b]
[t.] = 4;‘; rp(l—p) + o(ﬁ), [9.10c]
provided that
P35, > 1, [9.11]

where r, is the particle axis ratio defined in [3.5). The first and last of these expressions
accord with the results of Hinch & Leal (1972), with account being taken of the exchange
ofthe*1" and “2” indices from the notation of their paper (cf. footnote on page 242). However,
in place of [9.10b] they obtain [7,] = o(r,/Inr,)P~'. The discrepancy may perhaps stem
from a possible failure on their part to take account of the asymptotic relation given in the
footnote on the bottom of this page.

Note that [9.5]-[9.7] cannot be applied to either the “non-interacting” or “first-order”
dumbbell (cf. [8.15] and [8.16]), since it has been assumed a priori that r, = co for such
bodies (i.e. B = 1). Hence, it becomes impossible to find a Péclet number sufficiently large
to satisfy the inequality [9.8]. (See, however, [9.22] and [9.13].) However, the numerical
results tabulated in table 10 may still be employed to calculate the rheological properties
of suspensions of more general dumbbells (cf. table 3), when the spheres comprising the
dumbbell are sufficiently close to admit of strong hydrodynamic interactions. Such results
apply only at Péclet numbers large enough to satisfy the inequality [9.2].

The “intermediate” case

For the intermediate case, corresponding to the inequality [9.3], Hinch & Leal (1972)
have succeeded in obtaining an asymptotic solution valid only for the case where r,» 1
(or, equivalently, by means of the transformation [9.4], for the case where r, « 1, eg a
circular disk, for which r, = r, = 0). From [9.3] this occurs when

r,>» P13 » 1. [9.12]

When this dual constraint is satisfied, the goniometric factors are of the forms

(sin?6) =1 — [9.13a]

Pl/3

*In the computation of [r,] it has been noted that the term (B~ — 1) appearing in [8.6] is asymptotically
equal to 2/r (cf. [9.19)).
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b

(sin?0cos2¢> = —1 + e

(9.13b]

(sin® O sin 2> = F‘ﬁ [9.13¢]

in which a, b, ¢ are numerical constants, for which Hinch & Leal (1972) and Leal & Hinch
(1973) give the approximate numerical values*

ax2. b=x4 =04 [9.14]

These values are subject to considerable uncertainty. Leal & Hinch (1973) estimate the ¢
coefficient to be no more reliable than + 30 per cent. However, as is discussed in Appendix F.
it is possible to employ the analysis of Stewart & Sgrensen (1972) to estimate the following
values for these coefficients:

a=10974, b=179, c¢=0727 {9.15]

Yet another method, albeit approximate, for estimating these coefficients, due to Schwarz
(1956), and discussed in Appendix F, yields

a="? b=x122, ¢~ 071 [9.16]

Of the three different sets of coefficients tabulated, those given in [9.15] are likely to be most
accurate since the Stewart & Serensen numerics agree well with those of Scheraga et al.
in their common domain of validity.

Some measure of the degree of accuracy of the asymptotic formulas [9.13], with coefficients
given by [9.15], is furnished by comparison with the exact values of these goniometrical
factors due to Scheraga et al. in tables 6a, 6b and 6c. It seems reasonable to assume that the
dual inequality [9.12] is at least approximately satisfied by the values r, = 50 and P = 60.
For this value of P, [9.13] and [9.15] combine to yield

{sin? O cos 20> ~ —0.541, (sin?Osin2¢> ~ 0.186, (sin? > = 0.751.

These approximate values may be compared with the exact Scheraga et al. values of
—-0.582, 0.176 and 0.799, respectively, tabulated in tables 6a, 6b and 6c, or with the values
—0.574, 0.172 and 0.797, respectively, tabulated in table 5 for r, = oc. Discrepancies here
are of the order of 7 per cent, suggesting that a value of P = 60 is not sufficiently large for
the asymptotic formulas [9.13] to apply with a high degree of accuracy. This is confirmed
by the tabulation in table 5, which also reveals the quantitative inadequacies of the asymp-
totic formulas [9.13], even for P as large as 60.

* Actually. Hinch & Leal (1972) only directly give the values of a and ¢. The b value may be obtained indirectly
by application of [8.10b] (with B = 1) in conjunction with the asymptotic value. {sin*0sin? 2¢> = 2P~ ',
given by Hinch & Leal.
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Substitution of the goniometrical factors [9.13] into {8.5]-[8.7] yields

(n) = [ne + pus [9.17]
[t = P”3 (2] = PW [9.17b, c]
wherein, for circumstances in which the inequality {9.12] holds,
Ml = 5(Q, + Q%) + (5/4)(B~! — 1)(3Q, + 4Q3). [9.18a]
= (5/9)[3(a — b)Q, — 4bQ3 — b(B™' — 1)(3Q; + 4Q3)], [9.18b]
K, = (5/4)c[403 + (B~ — 1)(3Q, + 40%)]. [9.18c]
K, = —(5/4)c[6Q, + 4Q% + (B~ — 1)(3Q, + 4Q3) [9.18d]

are, in general, functions only of r,.
Despite the fact that B — 1asr, — oo, one must generally refrain from puttingB™' — 1 =0
in these expressions. Rather, since

- 2
BI_I:rﬁj~E forr, » 1, [9.19]
the question of whether or not to put B = 1 in these equations depends critically upon the
manner in which the material constants Q,, Q, and Q% vary with r, for large arguments r,.
For example, in the case of “non-interacting” dumbbells, it follows from [3.73] (being careful
in passage to the limit h = 0), in conjunction with the values. of q, b, ¢ tabulated in [9.15)],
that*

(1] = 0.924r2P~ 173, [9.20a]
[1,] = O(hr}P~%3), [9.20b]
[t,] = 1.63572P 15, [9.20c]

These results agree exactly with those of Stewart & Serensen (1972), as may be verified by
setting h = 0 in [8.15] and [F.1].
From [3.73g] and [3.71] we have that to terms of dominant order in the interaction

parameter h,
13\123
SRS

* It might appear from a comparison between [9.20a} and [9.17a] that []_, = 0. Actually this is not the case,
since for the “non-interacting” dumbbell one finds from [9.18a} that

(e = 5/2.

This term, however, being of O(1) with respect to the parameter ,. is negligible compared with the term of order
r, (r,/P*'3) appearing on the right-hand side of {9.20a]. This follows from the facts that r,/P'> » t and r, » |
(cf [9 12] and {3.73g)).
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Hence, the inequality [9.12], required for the validity of [9.20], necessitates that
h™!'» P33 » 1. [9.221

For any (large) specified value of P, this inequality can always be satisfied by choosing r,
sufficiently large, thereby making h sufficiently small.
In the case of a long thin prolate spheroid (cf. [3.20]). [9.18] becomes. asymptotically.

., =2, K=(b-ar}/dlnr,, K, = —c/lnr,. K, =cri2Inr,

Insertion of these into [9.17], with use of Leal and Hinch’s values for the constants a. b. «.
given in [9.14].* yields

(] = (0.5r2/Inr, )P~ 173, [9.23a)

[t,] = —04/Inr)P" 172, [9.23b]

[t,] = (0.2r}/Inr,)P™ 1", 19.23¢]
P p

The value [5],, = 2, being of O(1) with respect to the large parameter r,, has been neglected
in obtaining [9.23a]. In view of the inequality [9.12] (with r, = r, for the spheroid), such a
term of order unity is negligible compared with the term of order (r,/In r,)(r,/P'/?) appearing
explicitly on the right-hand side of [9.23a].

Equations [9.23] agree with the original spheroid results of Hinch & Leal (1972) for the
“intermediate” case (cf. footnote on page 242 for minor notational differences), except that
they give [1,] = o(1)(r}/Inr,)P™ ' in place of [9.23b]. Their error here is likely due to the
same source as that discussed in connection with [9.10b], namely their probable use of the
relation B~! — 1 = 0, rather than the correct relation indicated in [9.19] for r, >» 1. In
both cases their expressions for [t,] are too large by a factor of r;.

10. SIMPLE SHEAR FLOW. LARGE PECLET NUMBERS. |B] > 1.

From [8.21] the equations governing rotation of an axisymmetric body suspended in
the simple shear flow [8.1] are

() = L1BG sin 20 sin 2¢, (10.1]
and

é = 1G(1 + Bcos2¢). [10.2]
In addition, as readily follows from [3.3], the body rotates about its symmetry axis with an

angular velocity

Q, = $G cos b, [10.3]

where Q, = Q-e.

* The a, b and c values given in [9.15] are presumably more accurate than those of Hinch & Leal. We have
merely used the latter’s values for the purpose of comparing {9.23] with the original calculations of Hinch & Leal
(1972).
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For |B| < 1, [10.1] and [10.2] reveal that in the absence of rotary diffusion the body
undergoes a time-periodic rotation of the type first described by Jeffery (1922). In contrast,
when |B] > 1 the body undergoes an aperiodic motion, ultimately adopting a stable ter-
minal orientation (8%, ¢®), characterized by

0 =0, ¢==0. [104]

This terminal orientation is easily calculated by putting [10.1] and [10.2] equal to zero, and
determining, by means of a linear stability analysis (Brenner 1972c) which roots (67 . ¢®)
of the resulting equations are stable to small perturbations in orientation. Alternatively,
one can integrate [10.1] and [10.2] and pass to the limit as t — oo (Bretherton 1962, Brenner
1972¢).

For B = 1 the stable orientation is found to be

0° = m/2, tan¢® =r,, [10.5a, b]
where r, is the quantity defined by [2.31]. As B varies from 1 to oo, r, varies from o« to 1.

Thus, in its stable terminal state, the particle lies in the x; — x, plane, and there its sym-
metry axis makes a positive angle ¢ with the x, axis, lying either in the range

n/2 = ¢* = n/4, [10.6a]

or

n/2 = ¢* — n/2 = n/4, [10.6b]

Figure 13. Terminal orientation of an axisymmetric body characterized by B > 1 when suspended
in a simple shear flow.
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as in figure 13. Depending upon the specified r, value, these stable orientations lic some-
where within the shaded regions shown in figure 13. These two different stable orientations
merely correspond to the two opposite ends of the symmetry axis of the body. When one
end points in the direction given by [10.6a] the other end points in the opposite direction.
given by [10.6b]. From [5.5] these orientations correspond to

e* =1, cos¢™ + i,sin¢*, [10.7]
in which either
. 1 . r, ,
cos ¢ = W* sSin d) = m- [108(”
or
xX l . X ru .
COSPT = (e ST = O8]

The former corresponds to that end lying in the first quadrant, and the latter to the opposite
end, lying in the third quadrant.
For B < —1 the stable terminal orientation is (Brenner 1972¢)

0" = n/2, tan @™ = —r,. [10.9a. b]

€

with r, defined as in [2.31]. As B varies from —1 to — . r, varies from 0 to 1. Again. the
particle lies in the x, — x, plane, as in figure 14, and there makes a positive angle ¢* with
the x, axis, lying either in the range

Inid = ¢* = m/2. £10.10a]
or

In/d = ™ — n/2 = n/2. (10.10b]

Ay

Figure 14. Terminal orientation of an axisymmetric body characterized by B < — 1 when suspended
in a simple shear flow.
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In [10.7] this stable orientation corresponds either to

r

L [10.11a]

e i
sin ¢ _(_rj+l)’2

cos P = ——5——7-
¢ (,eZ + 1)1/2

or

r

L3

TS [10.11b]

1 o
COS¢I=W~ smd) =

Since the suspended particles in a dilute suspension for which |B| > 1 adopt preferred
terminal orientations in the absence of rotary Brownian motion, the orientational distri-
bution function for this case is the Dirac delta function distribution

fle) = (1/2)[d(e + e®) + o(e — e™)], [10.12]

there being no distinction between the directions +e*. Consequently, in the limit where
P =G/D, - x,

{ee) = e*e”, [10.13]
and thus
(sin® 0) = sin? 0* = 1, [10.14a]
(sin? 0sin 29> = sin? 0% sin 2™ = B~ (B2 — 1)!”, [10.14b]
{sin? 0 cos 2¢) = sin? 0° cos 2¢* = —B~ !, [10.14¢]

valid for both B = 1 and B £ —1 (cf. [9.4]). These goniometric factors may be employed in
[8.5] to [8.7] to calculate rheological properties in simple shear for the case where |B| = 1,
provided that rotary Brownian motion is negligible.

Effects of weak Brownian motion

To incorporate the effects of small rotary Brownian movement into the analysis we
follow the general methods of Hinch (1971). In the absence of Brownian motion the general
mechanical equations of motion of an axisymmetric particle are (Brenner & Condiff 1974)

¢é=(I—ece)-H-e, [10.15]
in which H is the dyadic
H=A +BS, [10.16]

and é = de/dr is the time rate of change of the orientation of the symmetry axis of the
particle as measured by an observer fixed in space.

In the particular case of the simple shear flow [8.1], equation [10.15] is equivalent to {10.1]
and [10.2]. However, in the interests of generality, we shall refrain for the time being from
introducing particular values of A and S.
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When Brownian motion is absent the stationary orient;cltions of the particle e (and —e™)
are defined by the condition that
e = 0. [10.17]
Hence, from [10.15], e* may be obtained from the relation
I—-e*e®)+H.e® = 0. [10.18]
Since I — e®e® is an annihilator for all vectors parallel to e®, it follows that the general
solution of [10.18] corresponds to the requirement that the vector H - e* lie parallel to e,
ie.
H:e® = he®. [10.19]
Equivalently,
H-I)-.e” =0 [10.20]

The scalar h is therefore an eigenvalue of H, and e* is the corresponding eigenvector. For
[10.20] to possess a nontrivial solution, h must be a solution of the characteristic equation

det(H — 1h) = 0. [10.21]

For specified values of A, S and B this represents, in general, a cubic equation in h, possessing
three roots. These roots may either all be real, or else one root may be real with the other
two complex conjugates.

In the case of the simple shear flow [8.1],

H = 1BG(i,i, + i,i,) + 1G(i,i, — i,i,). [10.22]
The three eigenvectors are readily found to be
hy=H, h,=—H, hy=0, [10.23]
in which
H=iG(B* — )2 [10.24]
Stationary states are possible only when H is real. This occurs only when |B| > 1. When
|B| < 1, H is purely complex, and no stationary states are possible, at least for the case of
simple shear flow.

Following [5.5] the eigenvectors e} and e appropriate to h, and h,, respectively, may
be written generally as

e° = (i; cos ¢ + i, sin @) sin 6 + i; cos 6 (i=12), [10.25]

The eigenvector e¥ is indeterminate and irrelevant in view of the two-dimensional nature
of H for a simple shear flow. Introduction of [10.22]-[10.25] into [10.19] shows that

0F = 0% = n/2 = 0, say, [10.261
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and
tan ¢ = r,sgn B, [10.27]
tan ¢ = —r,sgn B, (10.28]
whence [10.257 may be written as |
e° =i, cos ¢ + i, sin @;°. [10.29]
To ascertain which, if either, of the two normalized eigenvectors ey’ and e3 represents a
stable stationary state we perform a linearized stability analysis. Write
e=e" + A, (10.30]

in which A « 1, where A = |A|. Here, the vector A represents a small perturbation about the
stationary state e®. For convenience we have temporarily dropped the subscript j on e®
and A. Set

A=A + Ay,

wherein A and A lie parallel and perpendicular, respectively, toe®. Sincee e =e® - e =1,
we find upon dot multiplication of [10.30] by itself that e® - A = O(A?). Alternatively, since
e*+A, =0, thene®-A = O(A? + A?), where A and A, are the magnitudes of the cor-
responding vectors. Inasmuch as e* and A, are colinear and |e®| = 1, then e®-A = A, .
Thereby we obtain A = O(A?). In consequence of this, only perturbations lying in the plane
perpendicular to e® need be considered in the linearized perturbation analysis. Thus,
[10.30] may be replaced by

e=e®+ A, + 0(A?, [10.31]
wherein
e*«A =0. [10.32]

Substitution of [10.31] into [10.15], with use of [10.17]-[10.20] and [10.32], ultimately
yields

A, =A-A +0(AY, [10.33]
where A is the dyadic*
A=(-e"e®)-H - (I - e®e®)h. [10.34]

* In view of [10.32], equation [10.33] could also be written as
A.L =A":A; +0(8Y,
in which
A'=(-e"e)-H-Th

is a complete (i.e. three-dimensional) dyadic.

JM.F., Vol. I, No.2 -F
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It readily follows from [10.18] along with e* -e* = [ that
Ae* =0 and e*.A =0, [10.35]

so that A is a planar (i.e. two-dimensional) dyadic whose components lie entirely in the
plane perpendicular to e*.
As a solution of the linearized equation [10.33] we try

A, = caet. 110.36

where ¢ is a constant scalar and a is a constant unit vector lying in the plane perpendicular
to e”. Substitution into [10.33] yields

A-a = Aa, [10.37]
Le.
(A —1,A4)-a=0, [10.38]

where I, = I — e¥e™ is the two-dimensional idemfactor for vectors lying in a plane perpen-
dicular to e*. For [10.38] to possess a nontrivial solution it is required that

det (A — 1,4) = 0, (10.39]

whence the roots 4, and A, of this quadratic equation are the two eigenvalues of the planar
dyadic A, and the (unit) vectors a, and a, are its eigenvectors. The eigenvalues are either
both real (as is always true when A is symmetric) or else they are complex conjugates. By
linear superposition, the general solution of [10.33] may be written as

A, = ciae™ + ¢,a,e", [10.40]

where the constants ¢, and ¢, are determined by the initial conditions. Stability of the
stationary state requires that the real parts of 4, and A4, be negative. Necessary and suf-
ficient conditions for this to be so are

trA <0 and detA > 0. [1041]
In the special case where A is symmetric, stability simply requires that
A, <0 and A4, <0 [10.421

In order to obtain an explicit formula for A for the simple shear flow case. it is convenient
to introduce a right-handed system of mutually perpendicular unit vectors {a;. a,,a;):

a, =i;, a, =e* x i, a;=e". [10.43]

Here, i is the unit vector parallel to the vorticity vector of the simple shear flow [8.1], and e*
is given by [10.29] for this flow. The unit vectors a, and a, lie in the plane perpendicular to
e®. With use of [10.29] it follows from [10.43] that

a, = i; sin ¢ — i, cos ¢}, [10.44a]

a; =i, cos ¢ + i, sin ¢}, [10.44b]
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or, solving these for i, and i,,

i, = a,sin ¢ + a;cos P°, [10.45a]
i, = —a,cos ¢ + a;sinP;”. [10.45b)]
In the present system,

I—e’e’ =a,a, + a3, [10.46]

From [10.22] to [10.24], [10.45], [10.46] and [10.34] follows
A, = —Haa, — 2Ha,a,, [10.47a)]

and

A, = Ha,a, + 2Hs,a,, [10.47b]

in which we have used the relations

B+1 .
tanz ¢‘;D = T—_l (] = ls 2)7

cos2¢® = —= (j=1,2),

1
B
and

Bsin2¢? = (B* — 1)V2, Bsin2¢F = —(B* - 1)!/3

derived from [10.27] and [10.28]. Since A is symmetric in both cases, it may be written in
terms of its normalized eigenvectors and eigenvalues as

A = EIIIAI + azazAz. [10.48]

Comparison with [10.47] shows that the stability criterion [10.42] is satisfied only by A,.
Hence, we conclude that only e? is stable, whence it follows from [10.26] and {10.27] that
the stable orientation is

0® = n/2, tan@> =r,sgnB. [10.49]

This result accords with [10.5) for B = 1 and [10.9] for B < —1.

In summary, the stable terminal orientation e* for the simple shear flow [8.1] is given by
[10.7} where ¢™ is the value defined by [10.49] (or by [10.5b] for B = 1 and [10.9b] for
B < —1). For this stable state the A value is given by [10.48], in which

Ay = —H, A,=-2H. [10.50]

When rotary Brownian motion is sensible the orientational distribution function satisfies
the differential equation

az
AN
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subject to the normalization condition
j;f d?e = 1. [10.52)

with é given generally by [10.15]. For D, = 0 the solution of this differential equation is the
delta function distribution [10.12], in which e* is the stable terminal orientation.

When the Brownian motion is weak, but nonzero. it may be regarded as a small pertur-
bation about the terminal state e*. Hence, from [10.31] and [10.17] we have that

e=A, =A-A, [10.53"

to terms of lowest order in the small perturbation A. Furthermore. from [10.31]. e = CA
since e~ is a constant. At steady state the distribution function for the case of weak Brownian
motion thereby satisfies the differential equation

¢ cf

JA-A =D — 7 710.54]
oA, (A-A.0) "OA, - CA, ‘ ’

(“,
e e = 0L [10.55]
A, Ja : -
in which
i, = —D of +AAf [10.56]
.‘A - r (';A‘L 1. l. .

is the rotary perturbation flux (Brenner & Condiff 1974).
When A is symmetric, such as is true for the case of a simple shear flow, these relations
admit of the solution

ja = 0. [10.57)

corresponding to a balance between the rotary diffusive and convective fluxes (Brenner &
Condiff 1974). Integration of [10.56] then yields the multivariate Gaussian distribution

=K lexp(—A, -C-A)) [10.58]
in which C is the symmetric dyadic

C = —A/2D,. 110.59]

and K = K(C) is the normalization constant

K= SEexp(_AL .C-A,)d%, [10.60]
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deriving from [10.52].* This constant is evaluated in Appendix H, with the result that
K = 2n(det C)~ 12, [10.61]

Independently of whether or not A is symmetric, C is a symmetric planar dyadic* lying
in the plane normal to e®. It therefore satisfies

e*.C=C-e*=0.

In consequence of this, and the fact that A; = e — e®,[10.58] may be written in the invariant
form

fle) = % (det C)!"? exp(—e-Ce). [10.62]
In the simple shear flow case it follows from [10.48], [10.59], [10.50] and [10.24] that
C=aa,C, +1,a,C,, (10.63]
in which
C,=3A C,=14A, [10.64]
where
A = P(B* - )12 » |, [10.65]
with
P = G/D, [10.66]

the rotary Péclet number. According to the unsteady solution of [10.1] and [10.2] for
|B| > 1 (Bretherton 1962, Brenner 1972c), the hydrodynamic relaxation time t, for
approach to the terminal orientation is (cf. [10.40], [10.50] and [10.24])

2

1y = CEFE - [10.67]
On the other hand, the diffusional relaxation time 1, is
1, = 6/D,. [10.68]

* In the more general case where A is not symmetrical the solution is still of the form [10.58] (with C sym-
metrical), but C is no longer given by {10.59]. This planar dyadic may be determined by substitution of [10.58] into
[10.54]. yielding

0-(C'A'+A.C ' +4D,I,) v = tr(A + 2D,C).

inwhichv = C- A, and I, is the two-dimensional idemfactor, I — e®e*. In order that this relation may apply
for an arbitrary value of A, we require that C satisfy

C ' A'+A.C™' +4DI, =0, tr(A + 2D,C) = 0,

in agreement with Hinch (1971). The latter condition is automatically implied by the former. The normalization
constant in [10.60] applies whether or not A is symmetric, though it is incorrectly stated in Hinch's(1971) thesis
with (det C)~! appearing in place of (det C)~!/2,
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Consequently, the parameter

1
A=.2 110.69)
31y
is the ratio of relaxation times for the rotary diffusion and convection.
With use of [5.5] and [10.44] (upon deleting the subscript j from the latter). equation

[10.62] adopts the form
. A . .
J0.¢) = ———=exp[—;A{cos? 6 + 2sin? O sin? (¢ — ¢™)}). 10.70]
4n. /2
where. from [10.49],
B +1\'?
¢* = (sgn B) tan'l(ﬁ) : [10.71]

In the limit where A — o, this distribution goes to zero for all (6, ¢) except at the critical
orientation, f = 0 = /2, ¢ = ¢*. This is consistent with the Dirac delta function
character of the distribution {10.12] in the limit where the Brownian motion is negligible.
A general expression for the second orientational moment (ee) required in the rheo-
logical calculations is derived in Appendix H, the result being
Ceed =[1 — $tr(C Hje e™ + iC 1, [10.72
valid in the limit of small rotary Brownian movement.* For the simple shear flow [8.1]
this gives
(ee) = (1 — 3A7")e¥e® + 2A7!(2a;a, + a,a,). [10.73)

This relation gives the first-order correction to [10.13] arising from the Brownian rota-
tion. It can be written out in the (i;, i,, i;) system appropriate to the simple shear flow
[8.1] by use of [10.7]. [10.44] (upon deleting the affix j), and [10.49]. In this manner it follows
that

(sin? 0 = (iyi, + iyiy):{eed = 1 — 2A" ", [10.74a)

(sin® 0sin 2¢p> = (i,i, + iyi;):¢eed = B~ Y(B? — HV'3(1 — 4A 1),  [10.74b]
and
(sin? B cos 20> = (i,i; — i,iy):deed = —B (1 — 4A 1), [10.74¢]

These represent the O(A™') corrections to [10.14]. They apply for both B > 1 and
B < —1.Equations [10.74] may be utilized in [8.5]-[8.7] to determine rheological properties
for |B] > 1 to terms of the first order in D,.

* Equation [10.72] holds in general, even if A is not symmetric, since a,.a,, C, and C, may also be interpreted
as being the principal axes and principal values, respectively, of the symmetric planar dyadic C.
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11. GENERAL TWO-DIMENSIONAL HOMOGENEOUS SHEARING FLOWS

Sections 8-10 have furnished a detailed analysis of the rheological properties of dilute
suspensions of axisymmetric Brownian particles undergoing simple shear. We will demon-
strate in this section, by a simple reinterpretation of various parameters, that these simple
shear results can be applied to general, two-dimensional, homogeneous shearing flows. In
particular it will be shown inter alia that the results of Scheraga et al. (1951, 1955) giving
numerical values for the orientational distribution function, and the various moments
thereof, may be employed for any two-dimensional flow, by reassigning a different interpre-
tation to the parameters B (or r,) and G upon which the distribution function f depends.
This same reinterpretation enables us to carry over the asymptotic, large Péclet number
analyses of Sections 9 and 10 to these more general flows.

Let (x}, x5, x3) represent an arbitrary system of rectangular Cartesian coordinates fixed
in space, and consider the general incompressible two-dimensional flow

u = i (x), X5) + Byu(x), X)), [11.1]
ouy  ouy .
et =0 ]

taking place in the x| — x} plé,ne. Here, (i, iy, i) are a right-handed triad of mutually
perpendicular unit vectors. Since

o =1V x u, [11.3]
then for this flow,
o = i, [11.4]
in which
H{ouy, ouy
=3 6—)6'1- - Eg [11.5]

The flow is thus characterized by an angular velocity vector possessing only a component
normal to the plane of shear.
The components of the rate of strain dyadic S in this arbitrary system are

S = ii:S. [11.6]

In consequence of the incompressibility condition Sj; = 0 and the symmetry condition
Six = S, these components satisfy

_ 11 +.82, =0, 1.7
and

12 = 831, [11.8]
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all other strain rate components being zero. Hence, the most general two-dimensional rate
of strain dyadic may be written as

S = (iyi} — i5i3)8) + (i}i; + i%i})S),. [11.9]
with
ou 1{du’ Cu’
S = ot g = 2 22 11.10a, bl
11 ox, 12 2(6)('2 ox [ 4, D]

Any two-dimensional linear shear flow will therefore be of the form

uy = 8),x; + (8, — w)x}. [11.11a]
uy, = (S, + w)x; — §;x5, [11.11b]
uy = 0. [11.11c]

The hydrodynamic properties of such a flow can thus be characterized generally by the
three independent scalar parameters S, S}, and w.

Rather than describing the flow in terms of the arbitrary system (x|, x5, x3) it is con-
venient to refer the motion to a coordinate system composed of the principal axes of S and
the direction of the fluid angular velocity vector w. Since S is symmetric, traceless and
planar, it can be expressed in terms of its principal axes as

S = (8,8, — 6,8,)S. [11.12]
in which
§=(8:9)"* = (5% + SHVE [11.13]

Here, §, and §, are the eigenvectors of S, normalized to unity, and defined by

S.8,=5,8,, S:8,=5,0,. [11.14a, b]

with
6, =16, = L, [11.15]

and
S, =S S,= -5, [11.16a, b]

the eigenvalues of S. The “1” and “2” directions correspond, respectively, to the principal
axes of tension and compression.

Since S is symmetric, these unit vectors are mutually perpendicular and lie in the x; — x}
plane. Together with i; they form a right-handed system of mutually perpendicular unit
vectors (8,, 8,, 83), with

8, =i} [11.17]
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Figure 15. Orientation of the principal axes of shear of an arbitrary two-dimensional shear flow.

As in figure 15, let § denote the angle required to bring the i} axis into coincidence with
the 8, axis via a rotation about the §, axis. Since equations [11.14] are invariant under the
transformations 8, — —4&, and 8, - — &, we may (arbitrarily) define the direction of the
8, axis such that B lies in the range

—n/2 < B <2 [11.18]

Having chosen f in this manner the direction of 4, is then uniquely determined by the
requirement that (8,, 4,, 8,), in that order, form a right-handed system.
It follows that ' ’

8, =iycos B + ij sin B, [11.19a]
8, = —iysin f + i cos B. [11.19b]

In conjunction with [11.9] and [11.12] these show that the angle § is determined by the
relations

cos2f = §1,/S, sin2f = §),/S. [11.20a, b]

Considered jointly with [10.26] these relations serve to establish whether 8, lies in the first
or fourth quadrant of the x| — x} system.
Since A = —¢-a(ie. A = ‘—s,-jkwk) then [11.4] shows that in the principal axis system,

A = (5,8, — 8,8,)w. [11.21]

Hence, from this and [11.12] the dyadic H defined in [10.16] may be written in the principal
axis system as

H = (5,5, — 8,5,)BS + (5,5, — 6,8,). [11.22]
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v /ﬁ
7

Figure 16. Orientation of the Cartesian axes x, and x, for a general two-dimensional shear flow
relative to the principal axes of shear.

Now, as in figure 16, rotate the axes (d;, &,) about the d5 axis through a positive angle
of 135° to form a new system of axes (x,, x,) lying in the (x}. x,) plane perpendicular to
the vorticity vector. Thus,

8, = —27V2i, + iy), [11.23a]

5, = 27133, —iy), [11.23b]

where (i, , i,, i;) are a right-handed triad of mutually perpendicular unit vectors along the
coordinate axes (x,, X,, x;), where x; = x} and

iy =iy = 85. [11.24)
In the new system it follows from [11.12] and [11.21] that
S = (i,i, + i;iy)S, [11.25]
and
A = (i,i; — ii))o, [11.26]

where, in the unprinsed system (cf. [11.5], [11.10] and [11.13]),

S =(3S:8)"? = (83, + $ip)'2, [11.27]
1fou, du, Ou, 1{0u, Ou,
=l5 — 3} = S=xl=—+ "] 11.28a, b,
@ ?.((%c1 0x2) T ox, 27 2lox,  ax, [ a.b.c]
with
u = iyuy(xy, X;) + bhuy(xy, x3). (11.29]
and

o = io. [11.30]
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Equations [11.25] and {11.26] combine to yield
}i=;%B*G*ﬁ,bl+izn)q-%a*ﬁzn ~ iyiy), [11.31]
wherein we have introduced two quantities, G* and B*, defined in terms of the specified
parameters w, B and § as*
G* = 20, ‘ [11.32]
B* = BS/w, . [11.33)

provided that w # 0.
As a special case of this general two-dimensional flow consider the simple shear flow [8.1]
taking place with respect to the (x,, x,, x3) system. For such a flow we have from [11.28] that

$,,=0, §;,=w=1G, [11.34a, b]
whence, from [11.27],
S =1G, [11.35]
since we are supposing that G > 0. Under these circumstances, [11.32] and [11.33] give
G*=G, B*=B, [11.36a, b]
whereupon [11.31] becomes
H = 1BG(i i, + i,i,) + 3G(i,i, — i,i,), [11.37]

in agreement with [10.22] for a simple shear flow.

Since the rotary velocity é is given generally by [11.15] for any homogeneous shear flow,
comparison of [11.31] with [11.37] shows that any linear, homogeneous, two-dimensional
flow (for which w 3 0), characterized by the flow parameters w and S, in which are suspended
identical axisymmetric particles characterized by the parameter B, can be put into a one-to-
one correspondence with a simple shear flow characterized by the velocity gradient G* in
which are suspended axisymmetric particles characterized by the parameter B*. By “one-to-
one” correspondence here we mean either insofar as rotation of an isolated body in the
absence of Brownian motion is concerned, or insofar as the orientational distribution
function is concerned. This follows from [10.51].and {10.52], which show .that two bodies
possessing the same é vector for a specified orientation e (and the same D,) necessarily
possess the same distribution function. Stated explicitly, if f(0, ¢; B*, P* = G*/D,) repre-
sents the orientational distribution function for a simple shear flow characterized by the
parameters B* and P*, then for the same orientation (6, ¢) (relative to the x,, x,, x;
system), f also represents the distribution function for a two-dimensional flow characterized
by the parameters B, S and w, provided that G* and B* are defined as in [11.32] and [11.33].

* Since we wish to have G* > 0 it is necessary to arrange matters such that w > 0. This can always be done by
choosing thed} = i; direction in (11.4]'or {11.30] such that iy « @ > 0. In turn, this can be done by a proper choice
of the “1” and “2” directions, such that the right-handedness of the coordinates is maintained in the order 1, 2, 3.
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That this is the case can perhaps be seen more explicitly as follows. Let angles (0. ¢) be
defined relative to the (x,. x,, x3) system as in figure 6. With e = i, a unit radial vector in
spherical-polar coordinates (Brenner & Condiff 1974) it is readily shown that

,_de .
é= Fri it + i, sin 0 ¢. [11.38]
in which (i,, iy, i,) denote unit vectors in the (r, 6, ¢) system. Use of the idemfactor in the
form I = i, + iyi, + i,i,. in conjunction with [10.15]. yields
ip + iy sin 0 ¢ = (igig + iyiy) H+i,.
Equating components gives, in general,

1

0=H,, ¢= mH,,,,, [11.39]
wherein
H,; = Qi H. [11.40]
Use of the relations
i, =iysinfcos¢g + i,sinfsin¢g + iy cos b, [11.41a)
ip =i, cosfcos¢ + i,cosfsing — i, sin b, [11.41b]
iy = —i;sin¢g + i, cos ¢, f11.41c]

connecting the spherical and Cartesian unit vectors, in conjunction with [11.31], gives
rise to the relations*

i = LB*G* sin 20 sin 2. [11.42]
¢ = 1G*(1 + B* cos 2¢). [11.43]

These are equivalent to Jeffery’s (1922) equations for a body of revolution suspended in a
simple shear flow (cf. [10.1] and [10.2]).

It follows that the various moments of the distribution relative to the (x,. x,, x;) system.
e.g., (sin* #), (sin? O sin 2¢) and {sin? # cos 2¢), are formally equivalent in the two cases.

* In addition. it i1s readily demonstrated from [3.3] that for a general two-dimensional linear flow the com-
ponent. Q, = e - Q. of the angular angular velocity vector € for rotation of the body about its symmetry axis is
given generally by the expression

Q. =e+ o= wcosl.
Use of [11.32] gives
Q. = $G* cos 0,

which is the same result as for a simple shear flow at shear rate G* (cf. {10.3]). Hence, the complete angular velocity
vectors £ are identical in the two cases.
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The utility of the general theorem of this section resides in the fact that it permits one to
utilize the known distribution function results (including the various moments required in
rheological and streaming birefringence calculations) given in Sections 8, 9 and 10 to
calculate the comparable results for any two-dimensional linear shear flow. In these expres-
sions for the moments one has only to replace B and G by B* = BS/w and G* = 2w,
respectively. Of course, one must also replace the derived parameters P = G/D,,
+ = BG/D, and A = G(B* — 1)!/%/D, appearing in these sections by the comparable
parameters

P* = G*/D, = 2w/D,, [11.44]
i* = B*G*/D, = 2BS/D,, [11.45]
A* = G¥(B*? — 1)'/3/D, = 2(B*S? — w?)!3/D,. [11.46]

i

Similarly, r, appearing in the appropriate calculations in Sections 8, 9 and 10 pertaining to
the distribution function and its moments must be replaced by r*, defined as

1 + B* 1/2
r} = (1—_—2;) (|B* <1), [11.47]
or
B* + 1\!7?
r¥ = (B—~——l) (|B* = 1). [11.48]

Of special interest is the fact that the extensive tables in Section 8, derived from the
tabulations of Scheraga et al. (1951, 1955) and Stewart & Serensen (1972), may be employed
for these more general flows. Since these authors were only interested in bodies for which
|B| < 1, the tables derived from their analyses are useful in present circumstances only for
situations where |B*| = |B|S/w < 1. In this context it would prove useful to have their
numerical computations extended to the case where |B| > 1 too.

The asymptotic analyses of Sections 9 and 10 may be employed to treat the cases where
|B*| < 1 and {B*| > 1, respectively, in the limiting case of large Péclet numbers, for general
two-dimensional shear flows.

Rheological properties of general, two-dimensional linear shear flows

Equation [4.27), which applies to all homogeneous linear flows, whether two-dimensional
or not, may be written in dimensional form as

T =248 + ¢u,(10Q,S — 17Q,(S - Cee) + (ee) - S — IS: (ee))
~3B7'(3Q, + 403)(A - (ee) — Cee> - A) + 5B~ 'D,(3Q, + 40,)(3ee> — I)]. [11.49]

From [11.25], [11.26], [11.32] and [11.33] the dimensional rate of strain and vorticity
dyadics in the (x,, x,, x3) system are

S = ZqG*(il i2 + i2i1)9 A = %G*(izil - iliz), [11503, b]
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where
q = S/o = B*/B. [11.50¢]

Substitution of these into [11.49], along with use of the relations B = ¢~ 'B* and [1 1.45},
and suppression of the isotropic term 175, yields

T = 20%G*[3(i,i, + byi)] + iyiy T, + byiyt,. [11.51]

in which t, and t, are defined generally by [6.26], and #* is defined as

n* = T,,/G* [11.52)

If in these relations we define

. n*/q) — u, <
* = lim — e
(n*] lim oL [11.53]
and

*1 — I Tl s ] _ 1 TZ s . -
[t%] ler(l) S1qC [z3] = .351-{1(1) ¢»—*~—uqu* [11.54a. b]

the expressions thereby obtained for these “intrinsic” viscometric parameters are

[1*] = 5Q, —£0,(sin? 0) — 1B*7'(3Q, + 403){sin®  cos 2¢)

+ 554* Y30, + 4Q4)<sin? O sin 2¢), [11.55]

(3] =5[3(B*™' — 1)Q, + B*~'Q4](sin? 0 sin 2¢>
—152% 7130, + 4Q3)(1 — 3(sin? 0 — 1(sin? 6 cos 2¢)). [11.56]

[t3]= —5[(B* "' + 1)Q, + B*~'Q4]{sin? O sin 2¢>
— 154*71(3Q, + 4Q4)(1 — 3¢sin? 0) + 1¢sin? 0 cos 2¢)). [11.57]

The system of relations [11.51]-[11.57] become identical to the analogous simple shear
relations [8.3]-[8.8] in the case where the two-dimensional flow is taken to be the simple
shear flow [8.1]. This corresponds to B* = B (and, hence, g = 1) and G* = G.

In applying these relations it must be kept in mind that they apply only in the (x;, x,. x3)
system, derived by rotating the principal axes of shear through 135°; that is, they apply to
the coordinate system in which S and A possess the general forms set forth in [11.25] and
[11.26]. Moreover, the Q values which appear in these relations are those appropriate to
the value B (i.e. r,), rather than B* (ie. r}).

By way of a simple illustration consider the case where the rotary Brownian motion is
dominant. Under these circumstances, the principal theorem of the present section shows
that the goniometric factors required in [11.55]-[11.57] are given by [8.12], in which A and B
are replaced by A* and B*, respectively. Hence, for |A*| « 1,
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(sin? 0) = 2 + goi*? + 0(:*4), [11.58a)
(sin? 0sin 2¢) = $5[A* — 1s5(3 + 35B*~2)i*? + 0(;*%)), [11.58b]
(sin? 0cos 20> = —g5B*1A*2 + O(1*4). [11.58¢]

Introduction of these into [11.55]-[11.57] yields
[1*] = [n)o — T955(12Q; + 6Q;3 + 357 'B*"'N)A*? + 0(;*%).  [11.59a)
[1%] = [3(Q; — Q,) — L7 'N1i* + 0(:*Y), [11.59b]
[t3] = [HQs — Q2) + &q7 'N1A* + 0(*)), [11.59¢]

analogous to [8.13). Here, {n], is defined in [7.8].
These results can be confirmed by application of {7.4] and [7.5], which apply at small
Péclet numbers to any homogeneous linear flow. These relations can be written as

T = 21,G*§* + ¢u,G*[T + g~ 'A*T* + g~ %*2T% + O(g~%*Y].  [11.60]

where T4, T%, T are the same as T,, T, T,, but with S replaced by §*, B replaced by
g~ 'B*, and A replaced by A*. The quantities S* and A* represent the values of S and A in
[11.50] rendered dimensionless with G*, i.e.

§* = Yq(i,i, + i,i,), A* = 3,0, — i,i,). [11.61a,b]

Use of these relations in [11.60] correctly reproduces the results cited in [11.59].

Relationship to the work of Wayland (1960)

Wayland (1960) undertakes the problem of streaming birefringence in a dilute suspension
of spheroidal Brownian particles undergoing a general two-dimensional shearing flow. In
this context, he calculates (for the case of dominant Brownian motion) the orientational
distribution function f relative to an “intrinsic” system of Cartesian axes which translate
with the fluid and maintain a fixed orientation relative to the local direction of the stream-
line along which the fluid translates. This contrasts with our previous calculations, which
describes the (local) distribution of orientations relative to a material observer, whose
orientation in space remains fixed while he translates with the fluid. It will be demonstrated
in this subsection that, by an appropriate re-interpretation of the basic physical parameters
characterizing the problem, the analysis can be reduced to that for a simple shear or Couette
flow, for which the essentially complete analysis is already available in Sections 8—10. More-
over, the subsequent analysis applies equally well to bodies of revolution other than
spheroids.
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S~ Direction of
fiuid motion

Xy

Figure 17. Curved streamlines in the plane of a two-dimensional flow.

As in figure 17,.consider a typical curved streamline of the two-dimensional flow taking
place in the x| — x, plane, perpendicular to the vorticity vector. As stated earlier in this
section, the orientation of these Cartesian axes is arbitrary. The xj axis is directed out of the
plane of the paper. Denote by § a unit tangent vector to the planar streamline at P, the sense
of this vector being such as to point in the direction of motion of a material point traversing
the streamline. Thus, with R as the position vector,

§ = OR/ds, [11.62]

where ds is a scalar element of arc length along the streamline, taken to be positive in the
direction in which § points. The direction of the vector iy = i, is chosen such that the scalar
w in [11.30] is non-negative. In addition, let fi be a unit normal vector to the streamline at P,
the sense of this vector being chosen such that (§, 1, 1;), in that order, constitute a right-
handed triad of mutually perpendicular unit vectors.

In terms of these quantities the local fluid velocity vector u = DR/Dr is given by

u = Su(x], x3), [11.63]
where u = [u| = 0 is the speed of a material point along the streamline,

_Ds
= [11.64]
the operator D/Dt being the material derivative.

The axes (8, fi, i) represent an intrinsic local Cartesian coordinate system, which main-
tains a fixed orientation relative to the direction of the streamlines. As the material point
moves along a given streamline, this system of intrinsic axes, regarded as affixed to the
material point, rotates. The instantaneous orientation of the pair of axes (§, ) in the plane
can be specified, for example, by the angle « required to bring the x axis into coincidence
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with the direction of § upon positive rotation about the i, axis. More precisely, we define
the angle a by the relation

§ =1ijcosa + iysina (11.65]
Since i = iy x §, this makes

fi = —isine +i;cosa [11.66]

The vector § is locked into the intrinsic reference frame and rotates with it. Accordingly.
from rigid-body kinematics (Goldstein 1950), if I' is the angular velocity with which the
intrinsic reference frame rotates relative to a space-fixed observer,

D§

— =T x38§.

Dt
Inasmuch as the vector I' possesses no component in the § (or fi) direction, the above may
be solved for I to yield

D§
r=§x— 67
§ x Dr [11.67]
Differentiation of [11.65] and subsequent use of [11.66] gives
%—( i} sina + i} cos )Da
p; ~\ThSmx T LESIT,
= ii4, - [11.68]
in which
&= D 11.69
=5 [11.69]
Consequently, [11.67] yields
I =i;a [11.70]
for the angular velocity vector of the intrinsic reference frame.
In order to obtain an explicit expression for &, we have by the chain rule that
Bs: _ 8 Ds 1.7
Dt~ és Dt (1.71]
However, by Frenet’s formula (Milne-Thompson 1960)
8 .
3, = [11.72]

in which k, is the curvature of the streamline at P. This curvature is positive or negative,
according as fi points fromn the convex to the concave side of the streamline, or conversely.
Its magnitude is |k, = |08/0s| = |0*R/ds?|, which is the inverse of the radius R of curvature

J.M.F, Vol. |, No.2-G
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Streamline

Orthogonal
Trajectory

Figure 18 Curved streamlines and their orthogonal trajectories for a two-dimensional flow.

of the streamline. Equations [11.68].[11.71] and [11.72] in conjunction with [ 11.64] combine
to yield

1= KU 1173

Consider now an intrinsic system of orthogonal curvilinear coordinates in the plane,
composed of the streamlines, PS. and their orthogonal trajectories. PN. as in figure 18.
The scalar dn is an element of arc length drawn along the orthogonal trajectory, and is taken
to be positive when measured in the direction of . In this intrinsic system the gradient
operator is (Milne-Thompson 1960)

R T [11.74]
Since u is of the form [11.63] it readily follows that the local velocity gradient referred to the

INtrinsic axes is

A
2 n~n n ~n U
-+ ffik,u + Shiku + 1S - ne7s
N ch

=
=

Vu = §§

2|

~

wherein we have employed [11.72] and its counterpart for the normal derivative (Milne-
Thompson 1960),

&
= kA [11.76]
cn

with x, the curvature of the plane curve PN orthogonal to the streamline at P. In conse-

quence of the incompressibility condition V «u = 0, equation [11.75] requires that

My k=0, (11.77]

s

which may be used to simplify [11.75].
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In view of [11.3] and [11.30], insertion of a cross-product symbol between the antecedents
and consequents of [11.75] gives (cf. Milne-Thompson 1960)

1 ou
= E(xsu - %) (11.78]

Equations [11.75] and [11.77] yield, for the rate of strain dyadic,
du an du
S=@8§ - ﬁﬁ)g + (AS + sﬁ)—z—(xsu + o {11.79]

For the fractional elongation rate, defined as
S,s =S8, [11.80]
this gives (cf. Milne-Thompson 1960)

S, = %(xsu + % : [11.81]
Addition of [11.78] and [11.81] with subsequent utilization of [11.73] furnishes the relation
w=a-—3§,. [11.82]

With use of [11.12], [11.19], [11.65] and [11.66], equation [11.80] becomes
S,s = —Ssin24,, [11.83]

in which
Ah=a—f. [11.84]
$
Streamline

Figure 19. Relationships between different Cartesian coordinate systems pertaining to a curved
streamline in a plane.
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As shown in figure 19, /, is the angle between the direction &, of the first principal strain
axis and the direction § of the streamline. in the sense shown in the figure. More precisely /.,
is the angle defined by the relation

§ = 0,cos/, +d,sin,,. [11.85]
as follows from [11.65] and [11.19]. Consequently,
sin 2z, = 2(8, - $)(8, « %) [11.86°

which may be used in [11.83].
From [11.42],[11.43] and [11.32],[11.33] we have for a general two-dimensional low that

Do LBS sin 20 sin 2¢ [11.871
— = 5 sin 20 sin 2¢. Nel
Dt - l '

D¢ . N
T BS cos 2¢. (1188

where, as usual, {) is the polar angle measured with respect to the i; axis, and ¢ is the azi-
muthal angle shown in figure 19. Recall that the x, — x, axes are defined relative to the
principal axes 4, and &, as in figure 16. Alternatively. if 4 is the azimuthal angle measured
relative to the first principal axis J,. as in figure 19, then

¢ =+ — 1357 [11.89]

In these relations DO/Dt and D¢/Dr (or D4i/Dty are the time rates of change of the local
orientation angles () and ¢ as measured by a material observer who translates along with
the fluid. while maintaining a fixed orientation relative to a set of axes fixed in space. In
setting down these relations we have implicitly utilized the fact that the center of the cen-
trally symmetric body translates along with the fluid (cf. [3.1]): that is. we are assuming
that the fundamental equations [2.9] and [2.10} apply even for nonhomogeneous flows of
the type under discussion. If L is the length scale of the inhomogeneity (typically the charac-
teristic linear dimension of the apparatus in which the flow occurs) and ¢ 1s the maximum
linear dimension of the suspended particle, then this condition will be met when ¢/L « 1.
This is tantamount to supposing that all of the preceding equations apply locally, where @
and S are then the local values of the fluid angular velocity and shear. It should also be
emphasized that the angle ¢ is also a local value. since ¢ is defined relative to the principal
axes of shear, which vary in direction from point to point in the inhomogeneous flow.

Let 06/6t and 0¢/6t denote the rates of change of the orientation angles as measured by
an “intrinsic observer” who, while translating along with the fluid, rotates in such a manner
as to maintain a fixed orientation relative to the streamlines. These may be obtained in the
manner indicated below.

Since the orientation vector e is locked into the particle, it follows from rigid-body
kinematics that

L axe (11.90]
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where  is the angular velocity of the suspended particle relative to a space-fixed observer.
The analogous rate of change from the vantage point of an intrinsic observer is

v % =R -T) xe [11.91]

sinc Q — I is the angular velocity of the particle relative to this observer. The last two
relations combine to yield

—=—-TIxe [11.92]
From [11.41] and [11.70] in conjunction with the metrical relation (Happel & Brenner 1965)
de = i, df + i, sin 0dg,

then follow the relations

30 D§ o D¢

A A 93a,b
6t Dt o Dt % [11.93a, b]
or, using [11.82], [11.83], [11.87] and [11.88],
.60 . . .
5= 1BS sin 20 sin 2¢, [11.94)
o0 .
5 = BScos2¢ + Ssin24,. [11.95)
These equations are identical to those given by Wayland (1960).*
The rotary flux vector relative to the intrinsic observer is
de of
=13 -D5 [11.96]
In the steady state this vector satisfies the conservation law (Brenner & Condiff 1974)
(.
%-1—0, [11.97]

leading to a second order partial differential equation for the orientational distribution
function f. Wayland (1960) succeeded in obtaining the first few terms in a series solution
of this problem, valid for small values of the dimensionless parameter S/D, (and |B} < 1)
—corresponding to the case where the rotary Brownian motion dominates over the shear.
However, as we now show, Wayland’s problem can be reduced to the case of a simple shear
flow, for which essentially complete solutions are already available over the entire range
of the relevant variables.

* Notational equivalences are as follows: S=E; B=b. ¢ =1 — 135, 4, = —A,: D, = D. Wayland's
azimuthal angle / should not be confused with our weighted Péclet number A.
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Define dimensionless quantities G, and B, as follows:

G, = 2Ssin24,, [11.98a]
B, = B/sin 24,. [11.98b]
In terms of these, [11.94] and [11.95] become
o0 . ) .
5= B,G, sin 20 sin 2¢, [11.99a’
d
‘5? = 3G, (1 + B* cos 2¢). [11.99b]

The form of these equations is now identical to Jeffery’s equations (cf. {10.1] and [10.2]) for
the rotation of a body of revolution (characterized by the rotary parameter B,) suspended
in a simple shearing flow at shear rate G, .* Indeed, for the case where the flow is the simple
shear flow [8.1] we have in [11.63] that u = Gx; and

A

Sziz, ﬁ:_'ilg

so that ds = dx, and dn = —dx,. With use of [11.23] and [11.85] we thereby obtain
cos 4, = sin s, = —2~ "2 whence 4, = 225°. This makes sin 24, = 1. Since, for the simple
shear flow [8.1], S = 1G. equations [11.98] become

G,=G, B,=B8B,

as was to be expected for this case.

It is an immediate consequence of [11.99] that the differential equation governing the
distribution of particle orientations (and, hence, the various moments of the distribution)
relative to the intrinsic axes is identical to that for a simple shear flow characterized by the
parameters B, and G,. All of the distribution function and momental results of Sections
8—10 may therefore be applied in present circumstances by the simple expedient of replacing
B and G by B, and G, respectively.

By way of example, Wayland (1960) utilized his power series solution of the intrinsic
distribution function for small S/D, to calculate the goniometric factors (sin? f cos 2¢>
and (sin® 0 sin 2¢> required in his birefringence calculations. These results can be repro-
duced from our present analysis as follows. For |1,| « 1, the adaptation of [8.12] to the
present class of problems yields

(sin? B cos 2¢) = —g5B; A2 + O(43),

* From [3.32) the component £ - e of the angular velocity vector of the rotating particle along its symmetry
axis is o - e relative to a material observer. Hence, relative to an intrinsic observer, this component is
Q-T2 @-D-e=(w-D-e
From [5.5]. [11.30]. [11.70], [11.82], [11.83] and [11.98a] this yields
Q, — T, =1G, cos 0.

e

which is the counterpart of [10.3].
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and
¢sin? @sin 2¢) = 154,[1 — 15(3 + 35B; )42 + 0(43)],
in which, from [11.98],

L4

A, = B,G,/D, = 2BS/D,.

Hence,
s 4BS? sin 24,
(sin? O cos 2¢) = T S0p7 .
and
. 2BS[, B?*S*[3  sin?2i,
02 = _ = .
{sin2 fsin 2¢) 1SDr|_1 oD? ‘35 + B +

From{11.89] we have that cos 2¢ = —sin 24 and sin 2¢ = cos 24. Conversion to Wayland’s
(1960) notation utilizing the notational equivalences set forth in the footnote on page 295
thereby yields

4bE? sin 2A,

{sin? @sin24) = — it
and
2bE b*E*[3  sin?2A
in2 e — e _ ° A
(sin* 6 cos 21) lSD[l oD (35 + 7 ) ]

in exact agreement with Wayland’s equation [23].*

This calculation is, of course, purely illustrative. More generally, one can employ tables 5,
6a, 6b, 6c and 10, as well as the asymptotic results of Sections 9 and 10 to obtain the pertinent
goniometric factors for any values of Wayland’s parameters. In this connection it is of
interest to note that Riley (1973) has recently outlined a detailed numerical scheme for the
solution of Wayland's distribution function differential equation for arbitrary values of
the parameter A,. Such a scheme is now seen to be superfluous.

* The distribution function itself, rather than its moments, can also be compared with Wayland’s expression
for this quantity. In making this comparison we obtain identical results for the quantities F,, F,, F, appearing in
his equation (22). However, in place of his expression for F, we obtain

64 18p* 192

This differs in three minor respects from that of Wayland. Since the expressions for the goniometric factors agree,
these discrepancies are presumably only typographical in nature.

B I[1 . 4 1 sin?2A,\ ., sin2A, . ... 1 .4
F, 4—"{[ sin® @ ‘60+———— sin’ 0032).—-—3&-—:“1 0sin 44 + — sin® O cos 64
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12. UNSTEADY STATES

Equation [4.27] is applicable only to the steady state, where ¢f/dt = 0in[4.11]. For time-
dependent orientational distributions, {4:14] must be replaced by
1 af

— 2 4,V (BTA S.e - §- 1= V2f 1
D 7 AR Are+ S.e — S-eee)f] = VS [12.1

r

If this equation be multiplied by ee d*e and integrated over all orientations. it readily follows
that the additional term

I ¢
T38G &
will now appear on the right-hand side of [4.26]. Hence, if we define a dimensionless time 7 as
i =Gt [12.2}

[4.26] may then be written as

R - . e
S:(eeee) = 1[S-(ee) + (ee>:S] — .7 '(3Ceed — 1) — 1B! ;/{r {eed. 12.3]
in which
D D - -
PP + D . /\ - /\ M D {124?
vt cf )

denotes the dimensionless, time-dependent, Jaumann derivative of an arbitrary dyadic D
(cf. [7.2b] for the corresponding time-independent derivative, J (D).

It is now assumed, as is usual, that the hydrodynamic portion of the problem of calculating
the stresses in the flowing suspension is governed by the quasistatic (i.e. time-independent)
Stokes’ equations [2.6]-[2.8]. Thus. the sole effect of the unsteady motion 1s assumed to
reside in the fact that the orientational distribution function f will depend explicitly upon
the time. Consequently, in place of [4.27], the deviatoric stress is now given by the more
general expression,

T ~ 24,GS

G 100,8 — 15Q, sym. tr (S - (ee))

+517130, + 40,)(3¢ee> — 1) + 3B7'(30, + 4Q§);§; Ceer.  [12.5]

with

sym.tr D £ LD + D" — {I(I: D) [12.6]
the symmetric, traceless portion of a general dyadic D. The angular brackets continue to
be defined as in {4.29], with f given by the solution of [12.1]. For time-dependent fluid
motions, i.e. S = S(1), A = A(r). it follows that the second orientational moment will
generally be of the form

(ee) = function[S(#). A(f): B. 4. i]. (2.7
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Substitution into [12.5] then shows that the mean deviatoric stress T in the suspension will
generally be time-dependent.

Owing to our quasistatic assumption, the same five material constants governing steady-
state rheological behavior also govern the comparable unsteady-state behavior. Prior
applications of the general theory may thereby be readily extended to a variety of nonsteady
motions of interest in rheological applications. For illustrative purposes only the simplest
mode of unsteady behavior is considered in this section.

Stress relaxation after cessation of steady flows (Giesekus 1958, Bird et al. 1971, Hinch &
Leal 1973)

Attention is directed to the relaxation of stresses ensuing after an arbitrarily specified
steady flow is suddenly stopped. For t < 0 a given state of steady motion, characterized
by the constant shear and vorticity dyadics S and A, is assumed to exist. At time t = 0 the
flow is abruptly stopped and subsequently maintained in that state—whereupon S = A =0
for all t > 0. Due to the anisotropic orientational distribution prevailing at t = 0, cor-
responding to that which exists in the steady flow prior to cessation of the motion, the
stresses do not instantaneously vanish. Rather, they decay gradually until the distribution
becomes isotropic due to the Brownian rotation.

For t < 0 the deviatoric stress for the steady motion is given by [4.27] or, equivalently,
[12.5] with d/0t = 0. On the other hand, for t > 0 the deviatoric stress is given by [12.5] as

T*/pu, =3B~ '(3Q, + 4Q‘3’)(6D, + g) {ee — iI> + 30D,N(ee — 4>, [128]

in which [2.36] has been employed to eliminate Q, in favor of Q4. Since no fluid motion
exists, this stress arises solely in consequence of the rotary diffusion. Upon settingS = A =0
in [12.3] it follows that for t = 0,

(6Dr + %) (ee — 3> = 0. [12.9]

The angular brackets here and in [12.8] refer to the orientational moment derived from the
distribution function f* satisfying

1 of*

5. = Vif+, [12.10]

as follows from [12.1] in the absence of fluid motion. Accordingly, the deviatoric stress
adopts the simple form
T* = 30¢u,D,Nee — iI). [12.11]
Integration of [12.9] for ¢t = 0 yields
Cee — iI> = (ee — 41D, exp (—6D,1), [12.12]



300 HOWARD BRENNER

in which the constant, time-independent dyadic denoted by the subscript o is the initial
value of (ee — {I> at zero time. In turn, since f* = f~ at t = 0, this is the same as the
value of the goniometric dyadic appropriate to the steady-state orientational distribution
prevailing for t < 0. In this manner the deviatoric stress for ¢ > 0 is given by the expression

T* = 30¢u,D,N ee — LI}, exp (- 6D,1). [12.13]

The stress therefore relaxes exponentially rapidly with time, the relaxation time being
(6D,)" 1.

At time t = 07 the stress is given by the above relation with the exponential factor sup-
pressed. In contrast, the steady-state stress, T, say, is given by [12.5] with &7t = 0. The
stress is therefore discontinuous at time ¢t = 0, the values at ¢t = 0 and 1 = 07 being dif-
ferent. The diffusive contributions to the stresses T~ and T are the same at 1 = 0, since
the orientational distribution function and, hence, {ee — 1> are continuous at 1 = 0.
However, the contribution of S and A to the stress vanishes abruptly at 1 = 0. Therein
lies the source of the stress discontinuity.

When the stress relaxation proceeds from a previous state of steady simple shear. we find
from the definitions of the various goniometric and viscometric factors in [5.5]. [6.26] and
[8.34] that [12.13] may be written as

T1,/éu,D, = 15N {sin? fsin 2¢> e~ P [12.14a)
Tt = (T}, — T1)éu,D, = ISN<sin? cos 26 + 3sin> 0 — 2y,e "™ [12.14b]

and
2 =(T3, ~ T33)/bu,D, = —15N (sin 0 cos2¢ — 3sin® 0 + 2>.e o™ [12.14¢]

all other stress components T;; being zero. The goniometric factors indicated by the affix o

are those appropriate to a simple shear flow, available in Sections 8-10. Values of the
material constant N are available for a variety of bodies in Section 3.

Long thin spheroid at large Péclet numbers

The N value appropriate to a spheroid for which r, » 1 is given by {3.20]. When the
shear rate G in the steady shear flow is sufficiently small to satisfy the inequality P'* > r > 1.
we find with use of [9.5]-[9.7] (with r, = r)) that at time t = 07,

+ ap-1
T LpPt [12.154]
éu,D,  In2r, — 0.5

8.772r, . 61y

[12.15b. ¢]

L= -

In 2;:1, ~05 2r, — 0.5
By contrast, for the steady shear, we have from [8.37] that in the same circumstances,

Tis — G _ 03155,P 2 t6a
du,D, In2r, — 05 L
0.25r} ~ 0.25r;

“in2r, - 15 7 Tn2r, — 15

= [12.16b.¢)
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The magnitudes of the shearing and normal stresses thereby decrease by at least an order of
magnitude immediately upon cessation of the flow.

Non-interacting dumbbell

With use of [3.65b] and [8.12], the stresses appropriate to a dumbbell composed of non-
interacting spheres are, for small Péclet numbers, given by the expressions

T12/éu,D, = (9/20)r} Pe™ 5%, [12.17a]
(T11 — T33)/pu,D, = —(3/70)r} P2e~ >, [12.17b)
(T32 = T33)/du,D, = (3/28)r2 P2e~ 60, [12.17c]

valid for P « 1. These agree exactly with the results of Bird et al. (1971), derived from a
detailed, small Péclet number solution of [12.10] subject to the initial condition that f * = f~
att = 0.(Notational equivalences are the same as those set forth in the footnote on p.244)1In
this connection we note that the exact values for the goniometric factors for a non-interacting
dumbbell (B = 1) required in [12.14] are already available in table 5 over the complete
range of Péclet numbers.

Two-dimensional flows

The expressions [12.14] may be applied to the two-dimensional flows discussed in Section
11. As outlined there, the goniometric factors required in [12.14] can be obtained from those
available for a simple shear flow in Sections 8-10 by the simple expedient of replacing B
and G by B* and G*, respectively, defined in [11.32] and [11.33]. The “1” and “2” directions
appearing in [12.14] are those defined relative to the principal axes of shear of the two-
dimensional flow by [11.23]. With this choice of directions, all T;; are zero, except those
appearing in [12.14].

Other examples of important unsteady flows may be found in the works of Kirkwood
(1967) for “stiff” linear polymer chains, Bird et al. (1971) for dumbbells, and Leal & Hinch
(1972) and Hinch & Leal (1973) for slightly deformed spheres and spheroids.
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APPENDIX A
The Q;jy tensor for a body of revolution

From [2.13c], [2.14c] and [2.17c¢] it is found that the material tensor Q satisfies the sym-
metry conditions

Qijkl = jSkl = Qijlk = Qkh‘j- [A.1]
These symmetries are the same as those arising in the Hooke’s law elasticity tensor
(Frederick & Chang 1965, Love 1944, Landau & Lifshitz 1959) for linearly elastic anisotropic

solids; that is, if, following Frederick and Chang’s (1965) notation, o; ; = 0j; represents the
stress in an elastic material, and

ha =3y + w,) =1, [A.2]

represents the strain (with u; the displacement vector), then the constitutive equation for a
linearly elastic anisotropic material is

6i; = Ciulu, (A.3]



306 HOWARD BRENNER

in which the elasticity tensor C;;,, (a material tensor) possesses the same symmetrics as
set forth in [A.1]. In general, such a tensor possesses 21 independent scalar components.
Following Frederick & Chang (1965) we replace [A.3] by the “engineering notation”
relation,
0, = Cyuly (. f=1,2,3.4,5,6). [A4]
in which

01 =0y, 0;=0y, 03=033, 04=033=03. 05=03 =0y3. 0,=0;=0,,. [AS]

along with similar relations connecting the /; to the /;;. The symmetry relations [A.1] are
then summarized by the relation

Caﬂ = CB&
Upon writing out [A.3] and [A 4] explicitly, and utilizing the equivalences {A.5] (along with
similar equivalences for the strain), we find upon comparison that

Cii=Cie Ci2=0Chpane Ci3=Chpaa. Cia=Chya3 = Cyys0.
Cys =Ciizi = Crinss Cio=Criz = Ciyas
and .
Car = Coay = Caanye Caza = Ch320=Ca222. Caz = Ch333 = ;.
Caa = 203323 = 2C 333 = 203353 = 2C533,, Cas = 2C3331 = 2C3313=2C55,3 = 20535
Ciye =2C,312 = 202321 = 203512 = 2C53,;.

etc. In general, the factor of 2 arises only when both the first and second indices are either
4, 5 or 6.

Love {1944) presents a detailed investigation of the symmetry properties of the C,; for
the case of “transverse isotropy™ {see p. 152, equation [2] and p. 154. equations [5]-[11] of
Love 1944). This particular symmetry is equivalent to that of a body of revolution, though
not necessarily possessing fore—aft symmetry. Using these results he demonstrates that, of
the 21 independent components of C,,. in a body-fixed system of Cartesian coordinates
(%,. X; X3), with X; as the symmetry axis, the following components must be zero:

614 = 615 = Cm = 624 = 625 = 626 = 634 = 635 = 636 = 645 = (:46 = Csh =0, [A.6]
and that the following four relations must hold among the remaining nine nonzero com-

ponents:*
611=622» 613=C23» Caa = Css. Coe =C11 — Cia. [A.7]

* Love’s {1944) notation differs slightly from ours, the connection between them being

C,,(this paper) for f = 1.2.3:
CoplLove) = { s»(this paper) for f
3C,4(this paper) for § =4.5.6.

The extra factor of 1;2 arises from the fact that in Love’s (1944} definition of the strain ¢;; we have that

Iy =eyg0 lay = eay. i = e3;.

but
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Imposition of fore-aft symmetry (i.e. invariance of the body under the transformation
3 — —3) does not result in any further symmetry reductions, since the existence of a center
of symmetry is without effect on the general properties of the elastic coefficients (Love 1944).

We may conclude from this that the C,; matrix for a body of revolution may be charac-
terized by only 5 independent coefficients, say C,,, C,,, C,3, Cs; and C,, (with X, as the
symmetry axis). Consequently, the only nonzero tensor components of C,;,, and their
relations to these 5 independent matrix coefficients, are as follows:

Cuu = 62222 (Ecll)ﬂ 63311 =L~ 63322 = 62233 (5613),
62323 = 62332 = Cszzs = 63232 = Cax:«u = 63113 = 61331 = 61313 (5%644),
C2211=Ci122 (=Cyy). Ci333 (=C3a),
61212=61221=Cz112=62121 [=3C,, - Cy2)) [A8]
These relations apply, of course, only in the body-fixed system of coordinates, denoted by
the overbar.

As can be verified via a term-by-term comparison, the C,;, tensor may therefore be

written as '
Ciju = 010 Co + (0udy + 040,)C, + (603053 + 6,;6,3613)C,
+ (054013613 + 040;30,3 + 0,0;30;3 + 0;0;30,3)C;
+0130;36,3013C4, [A.9)]
in which we have defined*
Co = ClZa ¢, = ‘%(Cu - sz)a C, = 613 - CIZ’
C3=3Ci; + Cas ~ Cyy), Co=Cyy + Cy33 —2Cy3 — 2Cy,.

With e =1 a unit vector drawn along the symmetry axis of the axisymmetric body, we
have that the components of the vector ¢, in the body-fixed frame are (¢,, &,, ;) = (0,0, 1),
i.e. & = J;;. Consequently, [A.9] may be written in an arbitrary system of Cartesian axes as

Cij = 656 Co + (046 + 840,)C, + (Oueie; + d;;6,€)C,
+ (6jkel'e, + 5i,ejek +‘ 5ikejel + (sﬂeiek)C3
+ ee;6,6,Cy. [A.10]

With regard to the Q,;, tensor we may therefore write an expression identical to [A.10],

with coefficients Qo, Q,,. .., Q4 appearing in place of C,, C,,..., C,, respectively. Upon

forming the product Q,;,s,, to obtain the contribution of the shear to the stresslet A in
[2.11], we observe that the contribution of the @, term to A;; is 8;;Q05,;. This, however, is

* Inverse to these are the relations
C,, =Cy+2C,. Ciy=C,. Ciy=Co + Cy,
Ci3=Co+2C, +2C, +4C5 + C,.  C4y = 2C, + 2C,.

JM.F., Vol. I, No. 2 -H
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identically zero in consequence of the incompressibility condition, s,, = 0. Hence. without
loss of generality we may put

0, = 0. A1)

since the term makes no contribution to A4;; anyway. Furthermore, since

Qiinsiw = 30, + 405 + Qe ersy

(where it has been noted that s,, = 0), it follows from the requirement of [2.15¢] that the
term in parentheses must be zero, i.e.

0. = —30, — 40,. [A12]

Substitution of [A.11] and [A.12] into [A.10] (with the C’s, of course, replaced by Q’s)
therefore yields the expression

Qi = (0405 +6,0,)Q + (0 eie; + 00,8, — deieje e)Q,
+ (Ojeie + 0y, + Oyee + 0,00, — dejese e)Qs. [A.13]

In consequence of this relation, the Q tensor may be regarded as possessing only three
independent components. It should be observed that each of the three separate terms in
[A.13] individually satisfies the general symmetry requirements imposed on the Q tensor by
[2.13c]. [2.14c), [2.15¢] and [2.17¢]. In anticipation of possible generalizations of the
rheological theory to particles devoid of fore—aft symmetry, we emphasize that the form
[A.13] applies without change to such circumstances. It is invariant under the transformation
e - —e, though the body geometry itself will not generally be invariant under this trans-
formation, unless it possesses fore—aft symmetry.

An alternative and philosophically more satisfying scheme (de Groot & Mazur 1962,
Jeffreys 1961) for investigating transverse isotropy utilizes the infinitesimal rotation matrix
(Goldstein 1950)

1 —dg¢ O
R; = |d¢ 1 0
0 0 1

for rotation about the X, axis to determine the symmetry restrictions resulting from the
fact that the body shape is invariant under rotation through an arbitrary infinitesimal
angle d¢ about this axis.

APPENDIX B
Material constants for axisymmetric slender bodies possessing fore—aft symmetry

Cox (1970, 1971) and Okagawa et al. (1973) demonstrate how the hydrodynamical
resistance properties of long slender axisymmetric bodies may be calculated for the special
case of simple shearing flows. It will be shown in this Appendix that the fundamental
rheological material constants for such bodies may be extracted from their analyses. Once
obtained, these coefficients may be applied to any type of homogeneous shearing flow.
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Figure 20. Axisymmetricbody held in place in a simple shear flow by the action of an external couple.
The streamlines are at right angles to the symmetry axis of the body.

We address ourselves first to the problem of calculating 'K | and 1. Cox (1971) considers a
slender body suspended in the undisturbed simple shear flow

v® = i,Gx,, (B.1]

and supposes that an external couple is exerted on the body sufficient to maintain it at
rest with its symmetry axis lying in the x, — x; plane. When the symmetry axis coincides
with the x, axis, perpendicular to the streamlines, as in figure 20, the couple exerted by the
fluid on the body is given by Cox (1971) for r, » 1 as (L,, L,, L;) = (L,, 0,0), where

8n| 1 K
— 3 —] ——— 4 .
L, = pu,a°G 3 [ln . + i rp)z] [B.2]

Figure 21. Axisymmetric body held in place in a simple shear flow by the action of an external couple.
The streamlines are parallel to the symmetry axis of the body.
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This result applies equally well to both sharp- and blunt-ended bodies.

On the other hand, when the symmetry axis of the body lies along the x, direction.
parallel to the streamlines, as in figure 21, the corresponding couple is (Cox 1971)
(L. Ly. L) = (L. 0,0), in which

K K
L, = p,2nab*G| 2 + 2 [B.3]
‘ Inr, (Inr,)"

for sharp-ended bodies, and
L, = u,Lab*G {B.4]

for blunt-ended bodies.
For a nonrotating ( = 0) axisymmetric body possessing fore—aft symmetry, we find
generally from [2.10], [2.12b, ¢], [2.19a]. {2.21] and {2.23] that

L= p,6V,[{e;e/K + (3;; — e;e)YK  }w; — (&;;€,0, + &;4€10))5;, 7] [B.5]
With the undisturbed shear flow given by [B.1] we have in the present case that
w; = 9,,;G/2, [B.6]
and
Sik = (0,204 + 0;30,7)G/2. [B.7]

When the symmetry axis of the body is oriented perpendicular to the undisturbed stream-
lines, as in figure 20, it follows that the components of the e vector in the space-fixed
reference frame (x,. x,, x3) are e,, = J,,, (m = 1,2, 3). Consequently, it is found from
[B.5]-[B.7] that (L,, L,. Ly} = (L,. 0, 0), with

L, = 6u,V,GWK, + 1). (B8]

Similarly, when the axis of revolution of the particle is oriented paraliel to the streamlines.
as in figure 21, e,, = 0,,5. whence [B.5]-[B.7] yteld (L,. L,, L;) = (L . 0.0). in which

L, = 6u,V,GGK, — 1) [B.9]

Since the particle volume is given by the expression V, = nab*K,. simultaneous solution
of [B.8] and [B.9] for 'K, and 7 yields

'K, = (6nu,ab’GK) ML+ L), [B.10]

and
t = (12np,ab®>GK,)" (L, —~ L,). [B.11]

Substitution of [B.2]-[B.4] into these relations, and use of [2.25], yields the expressions for
'K, and N set forth in [3.43] and [3.44] for pointed bodies and [3.51] and [3.52] for blunt
bodies.
Use of [2.28a] in conjunction with [B.10] and [B.11] gives
(L,/L) -1

= KA B.12]
B (Ly/L)) + 1 [ i
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This leads to the B-values set forth in [3.46] and [3.54]. As follows from [B.2]-[B4],
L,/L, » 1 for both pointed and blunt bodies. Consequently, B lies in the range 0 < B < 1
for both classes of bodies. Hence, comparison of [B.12] with [2.30] yields, for the equivalent
axis ratio,

re = (LJ./L“)I/Z» [Blﬂ

in agreement with Cox (1971). This leads to the values of r, set forth in [3.45] and [3.53].
The formula for 'K, may be obtained by noting that the couple (L,, L,, L;) exerted by

the fluid on a slender axisymmetric body rotating with angular velocity (£2, 0, 0) about its

symmetry axis Ox, in a fluid at rest at infinity is (cf. equation [7.5] of Cox 1971)

Ly=-4uQV, L,=L;=0. {B.14]
However, for this case, [2.10], [2.12b] and [2.21] combine to yield
Ly=—-6uQV'K , L,=L;=0. {B.15]
Comparison with [B.14] then gives
'K, = 2/3, (B.16]

valid for both sharp- and blunt-ended bodies.

Values of the translational resistance coeflicients 'K" and 'K, for slender bodies may be
obtained as follows: for an axisymmetric body translating in a fluid at rest at infinity, [2.9]
and [2.20] combine to give

F =-pR U F =-p'kR U, [B.17a, b]
for the forces exerted by the fluid on the body when it translates with velocity U (in a fluid

at rest at infinity) parallel and perpendicular, respectively, to its symmetry axes. For these
two cases, Cox (1970) gives the formulas

4np,aU nal
F = — ’ .
" In2r, + C, + 0{(ln rp)3} [B.18]
8nu,al u,al
F, = — . .
YT T +c a1 0{(1:1 rp)3} [B.19]

Comparison with [B.17] furnishes the values for the translational resistance material con-
stants cited in [3.37] and [3.38].

The material constants Q,, @, and Q% may be derived from the work of Okagawa et al.
(1973), concerned with the rheological properties of slender axisymmetric particles suspended
in a simple shear flow (in the absence of rotary Brownian motion). In essence, these authors
present expressions for the A;; coefficients in [3.4] for the simple shear flow [B.1] charac-
terized by the rate of strain tensor [B.7]. In conjunction with [2.35] such information suffices
to calculate the three material coefficients Q,, 0, and Q3.
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The A;; coefficients presented by Okagawa et al. (1973) are not precisely those appearing
in [3.4]. To distinguish between the two sets of coefficients we will let A ; denote the tensor
coefficients given by Okagawa, et al. It is readily shown* from their deﬁnmon that they are
related to our A;; coefficients by the expression

LAY BT R

=5y iAwe) (B0,

where A, = A, + A,, + A;;. Use of the expressions for the ﬂu (given by equations [57]
and [69] of Okagawa et al. 1973) in the space-fixed system of Cartesian axes depicted in
figure 22, then yields

16C
ALG = ——1(1 - 2 0)sin O si
1" 45A {1 — 3 cos* B)sin” sin ¢ cos ¢,
16C . . . ,
A,,/G = ——2(1 — 3sin? 6 cos® @) sin? 0 sin ¢ cos .
45A
16C
A33/G = — —(1 — 3sin? Bsin* @) sin® 0 sin @ cos ¢,
45A
16C,
A,/G = A,,/G = ISA sin? 0 cos 0 sin ¢ cos? ¢,
16C, . .
A3,/G = A,,/G = 15/\1 sin® 8 cos 6 sin® ¢ cos @,
2 16C, . .
A,3/G = Ay,/G = 3 +—1—5;\—lsm“95m2 @ cos® ¢, (B.211

Figure 22. Definition of the orientation angles 0 and ¢ used by Cox (1970, 1971) and Okagawa
et al. (1973).

* This is perhaps most simply demonstrated by comparing equations [2.67] and {2.65] of Brenner (1972a),
defining the 4;; in general, with equation [2.20] of Cox & Brenner (1971), defining the A,; in-general.
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wherein

2
= ________P L] .
1= 4 2r, + K) (8.22]

with K the numerical constant defined in [3.39]. In obtaining [B.21] we have utilized [3.42].
These expressions for 4;; apply to both pointed and blunt particles.

With use of [2.35] and [B.7], equation [3.4] may be written out in terms of the space-fixed
axes of figure 22 by observing that the components of the unit vector e in this system are

e, =cosl, e, =sinfcos¢d, e;=sinbsin g [B.23]

In this manner one obtains the expressions

A;1/G = Q,(1 — 3 cos?® 0)) sin? 0 sin ¢ cos ¢,

A,,/G = Q,(1 — 3sin? 0 cos? @) sin® O sin ¢ cos ¢ + 2Q4 sin? O sin ¢ cos ¢,

As3/G = Q,(1 — 3sin? 8sin?¢)sin? Osin ¢ cos @ + 2Q3 sin? O sin ¢ cos ¢,

A,,/G = A,,/G = —3Q, sin* 0 cos 0 sin ¢ cos* ¢ + Q3 sin 0 cos O sin @,

A3,/G = A,3/G = —3Q, sin® O cos 0sin? ¢ cos ¢ + Q% sin b cos 0 cos @,

A;;3/G = As,/G = Q, — 3Q, sin*#sin? ¢ cos® ¢ + QY sin? 6. [B.24]
Term-by-term comparison of these general expressions with [B.21] shows that all six of
these relations are satisfied by the choices

2 16C,

Q1=_’ Q2=_45A’

; 03 =0, [B.25]

leading to the results cited in [3.33]-[3.35]. Though derived by considering a simple shearing
flow, the material constants [B.25] apply, of course, to any type of homogeneous shearing
flow.

APPENDIX C

Material constants for dumbbells

Wakiya (1971) considers a dumbbell (see figure 2), whose center O lies at the origin of the
undisturbed simple shearing flow '

v = i, Gx;, [C.1]

where (x,, x;, x3) constitute a system of Cartesian axes fixed in space (origin 0), (i,, i,, is)
being the corresponding unit vectors, and G the shear rate. From [2.4] and [2.2] we have
for this flow that
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and
s = (i5i; + i;i3)G/2. [C3]
According to [2.10] and [2.19a] the couple exerted by the fluid on the dumbbell is
L=pu[K: (@ — Q)+ ¢:s]. [C4

Let (i,, i,, 13) be an orthonormal triad of right-handed unit vectors locked into the particle,
with 1, = e lying along the symmetry axis of the dumbbell. It therefore follows from [2.21]
and [2.12b] that, since

€ =0,y (m=1213) [C.5]
are the components of e in the body coordinates, then
'K = 16nc?[1,1,'K, + (41 + 1,1,0K ], [C.6]
in which it has been noted that
V, = 8nc*/3 (C.7]

is the volume of the dumbbell. In addition, [2.12¢] and {2.23] in conjunction with [C.5]
show that the triadic T may be represented in body coordinates as

t = —16nc3t(1)150y + 1,131, ~ 151,15 — 1,151;), [C8]

In terms of body-fixed coordinates we may write

Q =10, + 1,0, + 1,Q;, [C9]
and
L=1,L, +1,L, +1,L;. [C.10]
Thus, upon performing the indicated dot multiplications in {C.4], there is obtained
L, = —16apu,c*[tG(l,ny + 13n,) + (@, — im, GYK 1. [C.11a]
L, = 16nu,c*[tG(l;ny + lin) — (Q, — im,GYK 1. [C.11b]
Ly = —16nu,*Q; — im;GVK . [C.11c}
in which, for j = I, 2.3,
=%y, my=1iy, n=1;+i, [C.12a.b. ]

are the direction cosines between the body-fixed and space-fixed Cartesian axes.
From equation [W-211,* Wakiya (1971) gives the relations

o

L = —161:;4,,c2J~ A_,{dg, [C.13a]

0

* In making reference to specific equations appearing in Wakiya's (1971) first paper, we will prefix the equation
number by the letter W. For example, equation [W-21] refers to equation-[21] of Wakiya (1971).
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Il

, = l61m,,c2f A, lde,
0

L, = 8np,c? f (B! + B ) di, -
0

where, from equation [W-17],
Ay = 2(f1Y, - g, 1),
Ay =2cf_1Y, — g, 1)),

in which, from equation [W-15],

fi=Gliny —Q,, f_,=0GLny+ Q,,

g1 =Gln + Q,, g_, =Gln, - Q,.
In addition, according to equation [W-16],

B! + B} = —=2c[G(lyn, — l1ny) + 20,4(1 — F),

wherein*

F = tanh (.

315

[C.13b]

[C.13¢]

On substituting these results into [C.13], it follows that Wakiya’s formulas for the body-

fixed components of the couple are
L, = —327u,c*[G(,n;a® — I3n,b%) + Q,(a® + b?)],
Lz = 327!#,,6‘3[(;(11?13(12 - l3n1b2) - nz(az + bz)],

I~
w
I

—32nu,c* 3G n, — Lny) + Qs] Jm {31 — tanh{) d¢,
0

in which a* and b? are numerical constants given by equation [W-23] as
a a0
a? = f Y,(dl, b= f Y, de.
0 Q
Inasmuch as the direction cosines are connected via the identities
| my = lyn, — Lyn;,

my = liny — Iyn,,

my = bhny — Lin,,

[C.14a]
[C.14b]

[C.14c]

[C.15a, b]

[C.16a]
[C.16b]
[C.16¢]

* In contrast with the other formulas, which apply for all values of the aspect ratio r,, this expressions for F
applies only to the case where the spheres:are in contact (r, = 1). We shall carry along this value of F in the subse-
quent analysis, and later give the more general result for L; for arbitrary r,, kindly furnished to me by Professor

Wakiya in private correspondence.
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it follows that [C.11] may be written in the form

L, = —16nu,c[G{l,n;¥K, + 1) — LLn,(3K, — 1)} + Q,'K 1. [C.174a)
L, =16nu,c2[G{l;ny'K, + 1) — ;n, (K, — 1)} - Q'K ], [C.17b)
Ly = ~16mp,c*[3G(lyn, — In) + Q51K [C.17¢)
Comparison of the first two of these relations with [C.14a) and {C.14b] immediately yields
'K, = 2a* + b, [C.18)

and
T =a* - b2 [C.197

Similarly, comparison of [C.14c] with [C.17c] yields (cf. footnote on page 315)
'K, = 2f {*1 — tanh {)d{ forr, = 1. [C.20]
0

In the more general case, where r, # 1, Professor Wakiya has kindly furnished me (in
private correspondence) with the following formula, derived by him:

X

'K, = 2sinh’ f 3 n(n + D[1 - tanh(n + )] forr, # 1. (€21
1

n=

in which B is the bipolar coordinate parameter,

B =cosh™'r,. (c22
With use of [2.25], we find from [C.19] that

N = (6/5)(a* — b?). [C.23]

The B value obtained from [2.28a] is
gt 1 C.24]
230 [C.24]

in which

r, = afb [C.25]

is, by definition (cf. [2.30]), the equivalent axis ratio of the dumbbell. From the numerical
values of a and b tabulated in table 2, it is clear that r, > [ for all r,. so that 0 < B < |
for all possible values of the dumbbell aspect ratio.

It remains yet to determine the material constants Q,,Q,,Q; for the dumbbell. In
polyadic notation, [3.4] is equivalent to the relation

A =Q°:s. [C.26]

The dyadic s is given for Wakiya’s simple shearing flow by [C.3] in space-fixed coordinates.
In body coordinates the tetradic Q° is represented by the expression

Q° =1;11,1,0% (summation convention), [C.27
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in which 0, is given generally for a body of revolution by the right-hand side of [2.35) in
which e,, is replaced by é,, = 6,;-
Upon writing, in body coordinates,

A =1,i;4,, (summation convention), [C.28]
one obtains

A; = Gl Q% [C.29]

Explicitly, ,
Ay, = G[(yn, — Lny)Qy — Lny(Q, — Q). [C.30a]
A, = G[(lyn, — Lin)Qy — L3ns(Q, — @), [C.30b]
433 = 2Gl3ny(Q, — Q)), [C.30c]
A, = A4, = Glyny + Ln)Q,, [C.30d]
Ayy = Ay = Gllyns+ Lin)(Q, + 09), [C.30¢]
Ay = A5 = G(lyn, + 1;n3)(Q, + Q3). [C.30f]

In the first two of these expressions we have utilized the identity |
Iin, + In, + Liny = 0.
Note that [C.30] correctly accords with the relation
A, + Ay + Ayy = 0. [C.31]

In order to obtain Wakiya’s expressions for the 4;;, we note that the stresslet A appearing
in [2.11] is defined generally in equation [2.40] of Brenner (1972a) by the relation

5
r’p_, = —%;u,,V,,A:rr [C.32]

(subject to the conditions A;; = A; and 4;; = 0), in which r is the position vector measured
from the origin O; r = |r|, and p _, is the term of O(r~3) in the expansion of the pressure
field p defined in [2.6a]. The volume V, of the dumbbell is given by [C.7]. Wakiya (1971;
equation [W-27]) writes

rp-s = ~ 2,0 [C.33]
in which Q is the function
Q =(L- M)# + (L+ M)F3 — 2L7 — SM_,%,%, — 2N %%, — 2N_,%,%;. [C.34]
Thus, putting

r = ilfl + iz.'x-z + i3.§3
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in [C.32], utilizing [C.7} and [C.28], and comparing the resulting expression with [C.33].
yields

5c*4,,=L—-M,, 5*A,,=L+M,. 5¢34;;=-2L. [C35a.b.c]

and
5c34,, = 5¢3A,, = =M _,. [C.35d)
534, = 5¢*4,, = —N_,. [C.35¢]
5¢344, = 5¢3A,, = N, [C.351)

These relations accord with [C.31]. In the above, equations [W-29], {W-15] and [W-22]
combine to give

L = —c3Glynse,., [C.36a]
M, = —c3G(l,n, — LLnye,, [C.36b]
M_, = —3GU,ny + Lnye,, (C.36¢]
N, = —23[(Glyny — Dy)ey, + (Glyn, + Oy)eyy, [C.36d]
N_, = =263(Glyny + Qy)ey, + (Glyny — O))e,]. [C.36¢]

in which ey, e,, €,,, e,, are numerical constants tabulated by Wakiya (1971) as a function
of r,, and (cf. equation [W-22])

(@® + b)Q, = —Gyn;a* — Lyn,b?), [C.37a]
(@* + bHQ, = G(l,n3a* — I,n,b?), [C.37b]
Q, = —1G(yn, — Lny), (C.37¢]

give the angular velocity components (Q;, Q,, Q5) resolved along body axes for a couple-
free dumbbell (cf. [C.14] with L, = L, = L = 0).

Substitution of [C.36a, b] into [C.35a, b, c] yields

Zn = %G[(llnl — lyny)e, — linjeg), [C.38a]
Ayy = 3G[(lyny — line; — Iznzeq), [C.38b]
Az = 1G[23n5e,). [C.38¢]

Comparison of [C.38a, b] with [C.30a, b] then gives Q = {e, and Q, — Q, = 3¢,. Simi-
larly, comparison of [C.38¢c] with [C.30c] also yields Q, — Q, = e,. Consequently, we
have that

Q, = te;, [C.39]
and
Q, = e, — e). (C.40]
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Introduction of [C.36¢] into [C.35d] gives
A =4y = %G(Innz + Lmy)ey,

whereupon companson with [C.30d] then shows that @, = {e,, in agreement with [C 39]
Substitution of [C.37b] into [C.36d] yields

Nl = -C3G(l3n1 + Iln3)el,
in which (cf. equation [W-34]) ¢, is the numerical constant

def. 2(311 +r 912)

1 o [C.41]
with r, given by [C.25]. Use of this expression for N, in [C.35f] then makes
Ay = A5 = 1G(3n, + 1 nj)e,. [C.42]
Similarly, substitution of {C.37a] into [C.36e] gives
N_; = —c3G(l3ny + Iynj)ey,
whence, from [C.35¢],
Ay = Ay = 1G(yns + Lyny)e,. [C.43]
Comparison of {C.42] with [C.30f], as well as [C.43] with [C.30e], furnishes the relation
Q3 = e, — e), [C.44]

which satisfies both pairs of relations.
The Q, value may now be obtained from {2.36] by employing the expressions for B and
N in [C.24] and [C.23], respectively. In this manner there is obtained

1 1 2 .
0, = S[el — e, + 3b? (('e ; 1))]- [C.45]

It remains only to show that Wakiya’s values for 'K in [C.20] and [C.21] agree with the
accepted values (Cox & Brenner 1967) for this material constant.

Consider first the case where r, = 1. Using the definitions of the hyperbolic trigonometric
functions in terms of exponentials, it is easily shown that

K, = 2f {2e~“sech { d¢.
0
Now, Erdélyi et al. (1953) give the relation
2"‘[ - le7tsechtdt = (1 — 219 (5)L(s),
0

valid for s > 0. Here, {(s) is Rlcmann s zeta functlon, and I'(s) is the gamma function, which
for s an integer is I'(s) = (s — 1)' Choosing s = 3 then eventually gives

'K, = 3((3) = 090154, - [C48)
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in accord with the results of Cox & Brenner (1967) for the tangent-sphere dumbbell.

In the case where r, # 1, Wakiya’s result [C.21] must be reconciled with the formula of
Cox & Brenner (1967) for this case, cited in the last footnote on page 219. To effect this
reconciliation, we note from the definition of the hyperbolic trigonometric functions that

| —tanh(n + Hp = ———.

where x = e~ 2"* ¥ Use of the binomial expansion for (1 + x)™! (|x| < 1) then eventually
gives

1 — tanh(n + = 2 Z jmtlg=(2nt Limp

N)'—

whence, in [C.21],

Y n(n + D1 — tanh(n + HB] =2 Z Z D™ inn + e 2nrbm
n=1

n=1m=1

The absolute convergence properties of this double sum are such that one can interchange
the order of summation to obtain

rK[! o 4sinh3 /3 Z (__1)m+1 Z n(n + 1)6412n+nmﬁ. [C.47]
m=1 n=1
Now, for fixed positive values of m and f,
8~ 3mb *
cosech® mf = = o = Z‘ n(n + 1)e~2n+1mb

where we have employed the binomial expansion of (1 — y}™3(y = e 2™#: |y| < 1). Com-
parison with [C.47] then yields

'K, = sinh?f Y (—1)""" cosech? m,
m=1
in agreement with the formula of Cox & Brenner (1967). quoted in the last footnote on
page 219.

APPENDIX D

Q tensor for a “non-interacting” dumbbell

As pointed out in the footnote on page 221, the Q,;, tensor given in [3.67] is not the same
as the comparable tensor

Qi = (Opeie; + dyeje, — %5ijekel)Qa [D.1]

given by Brenner (1972a) for a “non-interacting” dumbbell. The apparent discrepancy
stems from the fact that Q;;, does not satisfy the (arbitrary) symmetry condition [2.13¢] nor
the condition [2.17a).
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To put [D.1] into “standard” form we note that since s,; = s, and s,, = 0, then the tensor

Qiju & ‘%(iju + Qi) — ;“SkteiejQ [D.2]
possesses the property that
Q;jklskl = Qijusu = Qm;sw (D.3]

From the point of view of [2.11] for the stresslet 4;;, the tensors @, ;,, and Q;;, are therefore
physically equivalent.
Insertion of [D.1] into [D.2] yields

Qiju = [Oeier + 8yeie, + Syeje + e, — §(5,;6,8 + Sy €130, [D.4]

in agreement with [3.67] to dominant terms in r,.

APPENDIX E
Evaluation of the h-integral defined in [6.14]
Write

h=21, [E.1]

where J(2) is the integral portion of [6.14]. In this integral set 2¢ = 5, whence

J = % j sin? 6 G(6) sin 6 d#, [E.2]
(1]
in which
4x
GO = f exp (x cos n) dn, [E.3]
n=0
with a(6) = —11sin® 0. As is readily shown,

G(0) = Z[J’t exp (x cos ) dn + rexp(—a cos 1) drp]-

0 0
But (McLachlan 1955)
f exp(tacosn)dny = nl(+a),
0

where I, is the modified Bessel function of order zero. Since I, is an even function of its
argument,

G = dxl(ja)).
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Consequently, from [E.2],

J = 2nj. sin? 0 I,(4|4| sin® §) sin 0 d0

0
/2

= 4n J sin? 0 I,(4|4| sin? ) sin 6 d6.
0

Now set sin? § = cos x. This is equivalent to cos & = 2'/? sin (x/2). Differentiation of both
sides of the latter then gives sin0df = —2~ /2 cos (x/2) dx. Therefore,

g (2
J = 3173 J- cos(ix) cos x I (4]4] cos x) dx.
0

x=

Use of the trigonometric identity

cos (4x) cos x = 4[cos (1x) + cos (3x)],

yields
2

J =+ ),
in which

ni2

J, = J- cos (3x)I,(3]4] cos x) dx,

0

and

n/2
J, = f cos (3x)I,(£4] cos x) dx.
0

Each of these J, integrals may now be evaluated by application of the general theorem
(Gradshteyn & Ryzhik 1965)

n/2
[ cos a2y cos ) dx =3 1., (0)L-0)
0

valid for v > —1/2, by putting v = 0, y = |4|/8, and successively choosing 4 = 1/4 and 3/4.
This procedure ultimately leads to

J = 271202 1 GIADT - 1aGIAD + T3aGIADT - 50 (1AD).

Use of this relation and [6.6] in [E.1] then furnishes the expression for h appearing in {6.16].

APPENDIX F
Estimates of the a, b and ¢ coefficients in [9.13]

Stewart—Sgprensen (1972) estimate :

Equations [9.16] indicate a P~ !/ dependence of the three viscometric functions for a
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simple shearing flow at large Péclet numbers. This theoretical fact accords with the empirical
numerical findings of Stewart & Serensen (1972) for dumbbells of large aspect ratio. In
turn, this information may be utilized in an indirect way to obtain estimates for the a, b, ¢
coefficients in [9.13].

These authors, in effect, solved [8.19]-[8.21] with B = 1 (cf. [8.23]) by a numerical scheme,
these results then being utilized to implicitly compute the three goniometric factors,
(sin? 0, ¢sin? B cos 2¢), ¢(sin? O sin 2¢), at various Péclet numbers, up to P = 600. These,
in turn, were employed to calculate values of the three viscometric functions in [8.16a]-
[8.16c]. At the larger Péclet numbers, they found by inspection that their numerical results
could be accurately fitted by the equations

N7 0678( )( )—”3 [F.1a]
n kTA,, 1—2h
_B = 093 ———)( )—7/3 [F.1b]
n,kTA} 1-2h '
1—h — 43
n kTA,, (1 - 2h) (g) . [F.Ic]
If equations [9.13] are substituted into [8.16], there is obtained, for P > 1,
-1/3
it~ 0~ m(i=ls] 729
ﬂ -7/3
kT ~ (3a - b’@“ﬁ(l’__ﬁ) (E) , [F.2b]
—-4/3
KA

Comparison of these with [F.1] yields
b — a = (0.678)(2)6'3/3 = 0.822,
3a — b = (0.93)(2)6'3/3 = 1.125,
¢ = (1.2006"3/3 = 0.727.
The numerical values of the coefficients obtained in this manner are

a=0974,  b=179, c=0727. [F.3]

Schwarz (1956) estimate:

Schwarz defines three functions F,(P), F,(P), F5(P), which in our notation (Schwarz's
symbol ¢ is equivalent to our P) are equivalent to

= $¢sin?2 ) — 1,
= 4 (sin? B cos 2¢),

J.M.F., ¥Yol. 1, No. 2--1
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Fy = 3(sin* Osin2¢>.

For B near unity, Schwarz demonstrates, by means of an approximate procedure for
determining the orientational moments of [8.19]-[8.21], that

F, ~3
3 183 085
Fz—t' -BE_Fm+—~I)— B
1.06 0.67

These lead to the values

(sin? B> x~ 1,

- 122 0.57
(sin*fcos2¢p> ~ —1 + P
- : 0.71 045
(sin* Osin2¢> = T P

and thence to the values of a, b, ¢ noted in {9.16]. Because of the approximate nature of
Schwarz’s scheme for obtaining the various moments, these values of a, b and ¢ must be
regarded as approximations, rather than rigorous estimates.

APPENDIX G
Energy dissipation

Additional energy dissipation rate. Consider an isolated solid particle of arbitrary shape
undergoing translational and rotational motion in a fluid subject to a homogeneous
shearing flow at infinity. The fluid motion will be assumed to be governed by the quasistatic
creeping motion equations [2.6]. Let S, denote the surface of the particle, and S, the
surface of a large spherical envelope of fluid containing the particle in its interior. In view of
[2.7], [2.8] and [2.5], the boundary conditions are

v=U+Qxr onS§,, [G.1]

and
v=v=v+oxr+s-r onS,, [G.2]

with r the position vector measured from the origin O.
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In creeping flow the time rate E at which mechanical energy is being dissipated in the
fluid region external to the particle is equal to the rate at which the stresses acting over the
surfaces bounding the fluid are doing work upon it. Hence,

E=—f dS:P.yv, [G.3]
Sp+Sew

where
= —Ip + u,[Vv + (VV)1] (G.4]

is the pressure tensor arising from the motion [2.6] satisfying boundary conditions [G.1]
and [G.2]. The directed element of surface area dS is drawn parallel to the inner normal to
the fluid volume bounded internally by S, and externally by S,. Thus, on S, dS is directed
outward from the particle, into the fluid, whereas on S_, dS is directed inward, towards
the particle.

In the absence of the particle, the undisturbed rate of mechanical energy dissipation
resulting from the homogeneous shear flow is likewise

E*=—| ds.p=.v=, [G.5]
sm

in which P® = 2us is the undisturbed pressure tensor.
The additional rate E* at which mechanical energy is dissipated in the fluid due to the
presence of the suspended particle in the shearing flow is, therefore,

E* = E — E*. [G.6]

Since v = v® on S, then, with the aid of the reciprocal theorem (Brenner 1963)

J. dS-P-v“’=f dS:P%.yv,
Sp+5aw Sp+Se

and the relation

dS.-P®.v =0, [G.7]

Sp
we eventually obtain (Brenner 1958)
E* = ) dS P.(v° —v). [G.8]
Equation [G.7] may be proved by utilizing the boundary condition [G.1] to obtain
S dS.P.v=F*.U+L*.Q, [G9]

in which

F*= | dS.P®, L°°=J‘ r x (dS - P®).
S

SP P
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Since P* possesses no singularities in the interior V, of the volume presently occupied by
the particle, one may employ the divergence theorem to obtain

| O :j V.-P*dV = 0.
VP
and

L‘”z*J‘ dS-(P°°)<r)=~~J~ V-(P"er)dV———Af (V.P*) x rdV = 0.
Sp vy v

P

The vanishing of these volume integrals is a consequence of the relation
V.P* =0.

Equation [G.9] then shows that the integral in question is zero, thereby demonstrating
the validity of [G.7].

Positivity of the additional energy dissipation rate. It will now be demonstrated that the
additional rate of mechanical energy dissipation satisfies the inequality.

E* 2 2u,V,s:s = 0, [G.10]

in which the equality sign holds only if, simultaneously, the following conditions obtain:

U=y, =0, s=0. [G.l1a, b.c]

in which case E* = 0.
In order to prove this relation, define the “additional” velocity and stress fields,

Vi =v—v®, P*' =P P> [G.12a.b]

arising from the presence of the particle in the undisturbed shear flow (v*, P*). With the
directed elements of surface area on S, and S, defined in the manner described following
[G.4], consider the integral

I = f dS.P* .v*. [G.13]

VS, +S.,
It will now be demonstrated that

I* >0, [G.14)

in which the equality sign applies only if v* = 0 everywhere in the fluid volume ¥; bounded
internally by S, and externally by S,; that is, only if v = v* for allr e V. From [G.1] and
[G.2] this occurs if, and only if, conditions {G.11] are each satisfied.

To prove [G.14] we note that by the divergence theorem, [G.13] can be converted into
the volume integral

I = f V-(P*.vhHav. [G.15]
Vy
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By identity, in Cartesian tensor notation,

V(P -v*) = (Pjv]), = P + Pjjvj;.

However, in creeping flow, P;;; = 0. Moreover, P{;; = 0. Consequently, from [G.12b],
P, =0.
Furthermore,
Pj = —6,p" + pvf + v).
Since d,;v;; = v;; = 0 in consequence of incompressibility, we thereby obtain
V- (P*ov¥) = p v + oo
The tensor v;; may be decomposed into symmetric and antisymmetric parts as follows:
v} =3 + o) + $0) — o).
However, it is readily demonstrated that
i + o)} — o) =0,
whereupon we find that
VeP*ov?) = 3u,0f + v}H)>
Since p, > 0, it may be concluded that
V-P"-v)20 forallreV}, [G.16]
wherein equality holds only if
' vfi + vl = 0. [G.17]

Substitution of [G.16] into [G.15] yields the inequality [G.14], the equality sign applying if,
and only if, [G.17] holds at each point r € V;. Equation [G.17] corresponds to a rigid-body
motion for which

vi=a+bxr forallreV,,
with a and b constant vectors. However, [G.2] requires that
vi=v—v® S0 asr| - oo.
Therefore, a and b must be identically zero, whence the equality sign in [G.14] applies only if
vt =0 forallreV. [G.18]

However, from [G.1], [G.2] and [G.12a], on the particle surface, v* is required to satisfy
the boundary condition v

Vi=U-v)+(Q-w)xr—s.r onS,.

Thus, [G.18] will be true if, and only if, conditions [G.11] are each satisfied.
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We have therefore succeeded in proving that [G.14] is valid, and that the equals sign
holds only if conditions [G.11a, b, ¢] simultaneously obtain.
Equations [{G.13], [G.14] and [G.12] combine to give

f dS.-(P - P®).(v* —v) 2 0.
Sp+S.

Since v — v = 0 on S, the integral over S, vanishes, whereupon the above inequality
reduces to

dS-P-(v“—v)ZJ dS «P®.v* — dS-P*.v.
SP

Sy Sp

Comparison with [G.8] reveals that the integral appearing on the left is E™. Moreover, the
last integral on the right is zero in consequence of [G.7]. Hence,

ET = dS. P .v®,
Sp

wherein the equality sign applies only if conditions [G.11] are met. By the divergence
theorem, the integral on the right may be converted into a volume integral over the volume
V, of fluid presently occupied by the particle, yielding

dS-P*.v* = J V. P2.v?)dV.
Sp vV
As in the derivation following [G.15], it is readily shown that
V(P ov®) = Su o + 0757 = $u,(25,;)° = 2p,8:s,
which is constant throughout the volume V,. In this manner we find that
E™ = 2u,V,s:s. [G.lé]
Inasmuch as s:s > 0 (with equality holding only when s = 0), we may conclude from
[G.19] that
E* > 2u,V,s:s > 0 unless [G.11] holds, [G.20a]
and that
E* =0 when [G.11] holds. [G.20b]

From [2.9] to [2.11] it is clear that the conditions [G.11] arise when the force, torque and
stresslet exerted by the fluid on the particle are identically zero, i.e.

F=0, L=0, A=0. [G.21a,b,c]

Inequalities imposed on material constants. Introduction into [G.8] of [G.1] and the
expression for v© given in [G.2], yields

Et=F.(v-U+ L-(w—ﬂ)+( dS-Pr):s, [G.22]

Sp -
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in which
F= f dS:-P, L = r x (dS-P), [G.23a, b]
SP

Sp

are, respectively, the hydrodynamic force and torque (about O) exerted by the fluid on the
particle. Now, the general definition of the symmetric, traceless, dyadic “stresslet” A
appearing in [2.11] is (Brenner 1972a)

1
Su,V,

[lf (rdS-P +dS-Pr)— I r-(dS-P)]~ [G.24]
2Js,

Sp

Since the undisturbed rate of strain dyadic s is symmetric and traceless (i.e. I:s = 0), then
[G.22] may be written as

E*=F-(v-U+L:(0 — Q)+ 54,V,A:s, [G.25a]
or, equivalently, in Cartesian tensor notation,
E* = F(v} — U) + L{w; — Q) + 5u,V,Ays;j. [G.25b]

The force, torque and stresslet required in the above expression are given generally by
[2.9]-{2.11]. In view of the inequalities [ G.20], the material tensors appearing in [2.9]-[2.11]
must therefore satisfy certain inequalities. In the context of present applications, attention
will be directed only to those material constants which are relevant to axisymmetric
particles.

For centrally symmetric bodies, [2.9]-[2.11] adopt the following simpler forms at the
center of symmetry of the particle:

F = p,t SV = Uj),
L; = 6u,V,['Kij(w; — Q) + t3uSuls
A;; = Niplop, — Q) + Qijrsus

in which [2.12b, c] and [2.19] have been employed. Substitution of these expressions into
[G.25b] and subsequent use of [2.18] yields

E' = I‘o“i'j(l’? = U)W — U+ 6u,V,'Ki{w; — Q)(w; — Q)
+ 10u, VN psifor — Q) + 5u,V, Q5555 [G.26]
in which [2.18] has been utilized.

Since the velocity parameters v — U, @ — £ and s may be independently chosen, the
non-negative nature of the quantity E* — 2u,V,s,,s,., requires that

Rifv? — U) — U) >0 forvf — U, # 0, [G.27]
"Kifw, — Q)(w; — Q) >0 for w, — Q, # 0, [G.28]
QijuiSijSa — $SmnSmn > 0 for Sy # 0, [G.29]
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and
6'Kijlw; — Qilw; — Q) + 10N 5w, — )
+ 5Qi 5% = 2gnSen > 0 for o, — Q # 0 and 5, # 0. [G.30]
Inequalities [G.27] and [G.28], which apply, in fact, for bodies of any shape. require that

the 3 x 3 matrices ||'K| and |'K| be positive-definite forms. These conditions are well known
(Brenner 1964b). For axisymmetric bodies they lead to the conclusion that

‘K. >0, 'K, >0, 'G.3lab!
and
'K, >0, 'K, >0 [G.32a.b;

as follows from [2.20] and [2.21] by noting that in a system of body-fixed coordinates OX,;
(i = 1,2,3) with OX, as the symmetry axis,

K, 0 0
I'Kl=J}0 'K, 0
0 K,
and
'K, 0
'Kl =} 0 'K,
0 'K,

in which it has been noted that the unit orientational vector e in this body-fixed system
possesses the components

e, =03

m

my  (m=1,23) [G.33]

Equations [G.31] and [G.32] are all satisfied by each of the bodies whose properties are
explicitly tabulated in Section 3.
By identity,
SpanSmn = %(511(() + éil(sjk)sijskl* [G.34]

whence [G.29] may be written in the form

Qi — H (04 0; + 040555580 > 0 for s, # 0. [G.35]
By means of [G.33] the Q,;, tensor for axisymmetric particles, given by [2.24]. may be written
in body coordinates. Inequality {G.35] therefore requires that

0<[Q;a—H0ud;+0,0))5,;5 =T +4Q, = DFT,+HQ |, —§+ 03N F33+53)- [G.36]
in which
=[4Q, — ) = 30,15, + 2(2(Q, — ) ~ 30,151,555 + [4Q, — §) — 30,153,
40, -5 -30,. 2Q,~3-3Q,
P —H—30,, 40, -1H-3Q,

S

=511 Sl t

(G.37)

Saall.
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In arriving at these relations, the identities

5 =5 " [G.38]

ij i »
and
Sy + Gyt G353 =0 [G.39]

have been utilized, the latter to eliminate §,,. Since the five strain components in the
body-fixed system, 5,,, 5,5, §;2, §23 and §;,, may be chosen independently of one another,
the inequality [G.36] requires that

0, > 1/5, [G.40]
0+ Q5> 1/5 [G.41]

and J > 0 for §;; # 0. The latter requires that the 2 x 2 matrix in [G.37] be a positive-
definite form, i.e.

4Q, -9 -32,>0,
and, upon forming the determinant of the matrix,
[4(Q; — 9 — 3Q.)° > [2(0, - %) - 30,
which are, respectively, equivalent to
30, - 9> Q,,
and, upon squaring the terms enclosed in square brackets,
0 —1>0,. [G.42]

In view of [G.40] we have that 4(Q, — ) > @, — i, whence it follows that the equation
immediately preceding [G.42] will automatically be satisfied if [G.42] is itself satisfied.

For an axially symmetric body we find with use of [2.21], [2.22] and [2.24], along with
[G.33], that, in body coordinates, the inequality [G.30] requires that

0 < 6, V,['’K(W? + W3) + 'K, W3] + 204, V,N(W,55, — W,5,3)
+5u,V,[J + 40, — )3T, + 40, — 1+ Q)G + ).

in which we have put W, = »; — Q; and utilized [G.38] and [G.39]. The quantity J is as
defined in [G.37). Since W, W,, W,, §,,, 522,512,523 and 55, may be chosen independently,
the above inequality will be satisfied if [G.32], [G.40], [G.41] and [G.42] are satisfied, and
if also ’

J E 6K, Wi — NW,5,, + Q. ~ 1 + Q95331 > 0,

and

J"E 6K Wi+ ENW,5, + 220, — 1 + 0,)52,]1 > 0.
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As in the case of [(G.37], satisfaction of these two inequalities requires that the two 2 x 2
matrices

K. _3N

_ K N
_§N, {TO(QI - % + QJ)

i
1l
IN. K40, - L+ 0

both be positive definite. This will be the case if 'K | > 0. 24Q, — ! + Q3) > 0. and if

PKUQ, ~ 5+ 03) > (+3N)

L

The first two of these inequalities are already contained in [G.32b] and [G.41]. while the
latter requires that

5 NN

01+ Q3 —5> 3k ]2

From [2.28b] the term in parentheses is the dimensionless angular velocity parameter B.
Therefore, from the definition of Q4 in [2.36] the latter inequality requires that

Q, + Q5 > 15 [G.43;

Equations [G.40]-[G.43] constitute the inequalities imposed on the Q material constants
by the requirement that the additional energy dissipation rate satisfy {G.19]. Each of these
four relations is satisfied by all of the bodies whose properties are tabulated in Section 3.

Energy dissipation in a dilute suspension of force-free and couple-free Brownian particles.
Upon putting F = 0 and L = 0 in [G.25a] there is obtained

E* = 5pu,V,Azs. [G.44]
According to [3.4] and [2.17c].
A =s:Q [G.45]

in the present circumstances. Inasmuch as Q° = Q“(e} 1s a function of the orientation e of
the particle, this makes E* = E*(e). Accordingly. [G.44] gives the additional energy dissi-
pation rate resulting from the presence of a force- and couple-free axisymmetric particle
suspended in a homogeneous shearing flow and possessing an instantaneous orientation e
relative to, say, the principal axes of the undisturbed shear s.

The additional mechanical energy dissipation rate (per unit time) per unit superficial
volume of suspension, specific to particles of orientation e. is therefore Su,pA:s. Con-
sequently. the additional dissipation rate D" per unit volume due to particles of all orienta-
tions 1s )

D" = 5u(,¢<#A:s_l'(e)d3e.

In consequence of [4.4a], [4.18], [4.21] and [4.6a]. this may be written as
D* = 5u,pG*A>:S.
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correct to the first order in ¢. The rate of dissipation D* per unit volume of suspension due
to the fluid alone being subjected to a mean shear S is

D® = 2u,8:S = 24,G*8:S. (G.46]
Hence, the total dissipation rate D per unit volume, |
D =D*+ D*, [G.47)
is given by the expression
D = 24,G*[S + $4<AN]:S,
to the first order in ¢. Comparison with [4.23] shows that this may be written as
D=T:S, [G.48]

where T is the mean deviatoric stress in the suspension. Thus, in the absence of external
forces and couples, the dissipation rate per unit volume of suspension is equal to the product
of the mean deviatoric stress with the mean rate of strain. This is a very satisfying result from
a continuum mechanical point of view, since it is precisely what one would have anticipated
(for a symmetric state of stress).

Equation [G.48] constitutes the generalization to the case where rotary Brownian motion
is sensible of a similar result due to Goddard & Miller (1967), Frankel & Acrivos (1970),
and Batchelor (1970).

From the inequality [G.19] in conjunction with [4.4a] we find that to the first order in ¢,

D* = 2u,#S:S.

With use of [G.46], [G.47] and [G.48] this furnishes the following lower bound on the
dissipation rate:

D =T:8 2 2,(1 + ¢)S:S 2 0, [G.49]

in which the equality sign applies only when S = 0.*

APPENDIX H
Evaluation of the normalization constant K defined in [10.60)
Substitute the expression for A, derived from [10.31] into [10.60] and utilize the displayed

equations following [10.61]. In this manner one obtains

K =9€exp(—e.c.e)d2e [H.1]

* Note from [2.9] to [2.11]. in conjunction with the fact that the suspended particles are both force-free and
couple-free, that the conditions [G.11] will all be satisfied if s = 0.
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Figure 23. Definition sketch of the spherical polar angles © and ®.

to terms of dominant order in the small parameter D,. Integration is over the unit sphere.
Let ¢; and ¢, be mutually perpendicular unit vectors lying along the principal axes of the
symmetric planar dyadic C, and denote by C, and C, its principal values, both of which
are positive. Thus, we may write

C=c,c,C,+ cy¢c,C,. [H.2]

(In the interests of generality we will not assume that A is symmetric, so that ¢, and ¢, are
not necessarily identical to the unit vectors a, and a,, respectively, appearing in [10.63].)
As in figure 23, the triad (¢, c,, e®) constitutes a mutually perpendicular system of unit
vectors.

Let (O, ®) be the spherical polar angles defined in figure 23, with ® the polar angle
measured from e® and the ® the azimuthal angle measured from ¢, . In this system we may
write that

e=1¢,sSin®@cos®+ ¢,sinOsind + e cos . [H.3]

Since f(e) = f(—e), equation [H.1] may be integrated over the unit hemisphere 0 < O < /2,
rather than over the complete unit sphere 0 < ©® < 7, and the value of the resulting integral
doubled to obtain K. Hence,

2n n/2
K=2 f f exp [ — C(®) sin’ @] sin © dO d, [H.4]
®=0JO=0
wherein
C(®) = C, cos®>® + C,sin’ P. [H.5)

Since sin?® =1 — cos?® and sin ® d® = —d(cos ®), it is possible to effect the @
integration analytically in terms of the error function. However, we will content ourselves
with performing an asymptotic integration, consistent with the asymptotic nature of {10.58]
itself.
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Inasmuch as C = O(D,” '), in the limit of weak Brownian motion the integrand of [H.4] is
nonzero only in the immediate vicinity of the pole, ® = 0. Consequently, in this limit we
may utilize the approximation sin ® ~ ©. Hence, [H.4] may be written as

2n
K=2 F(®)do, [H.6]
®=0
where
F(®) = J‘ exp (—COHO dO. [H.7]
e=0

Insofar as dominant terms are concerned, it is immaterial that we have replaced by upper

limit of integration, ® = n/2, by @ = oc. This is a consequence of the fact that the integrand

of [H.7] is everywhere vanishingly small in the limit as D, — 0, except in the immediate

proximity of the pole, ® = 0. Asymptotically, the resultant error is negligible.*
Straightforward integration of [H.7] yields

1
- . 8
F(®) 2C@) [H.8]
Therefore,
2xn dq)
K= f o =2 g = A ) +1(Ca C,
in which
do - n
Ic,,C - = . H9
(C, C,cos?® + C,sin?®  2(C,C,)"? [H5]
Since, in general, det C = C, C,, this yields
K = 2r(det C)~ V2, (H.10]

The second moment (ee) required in the rheological calculations can be calculated by
writing

(ee) = L eef d%e +J; eef d’e,

* This asymptotic procedure can be made more rigorous (Brenner 1970) by introducing an “inner"” stretched
variable © = @/\/5, in place of ©. This new variable possesses the property of being of O(1) in the proximity of
the pole for small D,. Indeed. such a procedure provides an alternate and more systematic asymptotic technique
for solving the basic orientational diffusion equation,

1 1 [0 1oy
Sme%(fésme)+——(f¢) [ ‘sme———) smGW]’

where (@, @) are the appropriate spherical polar angles measured relative to the stable terminal orientation e*.
This procedure can be employed to obtain higher order terms in the expansion.
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Figure 24. Definition sketch for the components of the perturbation vector A relative to the
direction e of the terminal orientation of an axisymmetric particle.

in which S, refers to the upper hemisphere (0 < ©@ < =/2} in figure 24, and S, to the lower
hemisphere (/2 < ® < n). Since both f(e) and ee are even functions of e (cf. [10.62]) the
above may be written as

lee) = 2f eef de. [H.11]
N

On §; we have exactly that
e=e“+ A +A, on§, [H.12]

where A and A, are the vectors depicted in figure 24. Thus, since A, = O(A?) we have that
on §,,

ee = e¥e” + e*A + Ae* + e A, + (e*A ) + A A+ 0(AY) [H.13]
By definition, A, is colinear with e*. We may therefore write
A = rke”.
To determine x, dot multiply [H.12] by e®, thereby obtaining
cos® =e-e* =1+ x|
whence
A = —e*(1 —cos®) ons§,. fH.14]
Since A, is perpendicular to e, we have by identity that
A =(I—-e¥e*)-A,
whence, upon utilizing [H.12],
A, = — e e”)-e. [H.15]
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Collecting results gives

(eed = Ze“’ewf fd% — 4e®e® | (1 — cos @)f d%e
Si

Si

+2 +H+ 2| AA fd%e+ 0(A?), [H.16]

St
in which g is the dyadic
= e*(I — e®e®). | efdZe. [H.17]

Si
From [H.3] and [10.62] we have that
f(©,®) = K~ 'exp[~(C, cos? ® + C, sin® ®) sin’ @)]. [H.18]
Therefore, ‘

n/2 2z
f ef d’e = clf d®sin? © cos Of (O, ®)dP
St

e=0 ¢=0

n/2 2n
+e, j dOsin? @ sin ®f(©, ®) d®

8=0 ®=0

‘ n/2 2n .
+e f J sin © cos © f(©, ) dO dO.
=0 JvO®=0

(-]

The @ integrations in the first two integrals above may be subdivided into integrals from
® = 0tonand ® = n to 2n. In this manner it is readily shown that

f - {“S d’} 1(©,®)dd = 0,

o=o (SIND

whence the first two integrals vanish. Thus, f ef d%e possesses, at most, a component in
Si
the e* direction. But this component is annihilated by the operator I — e®e® in [H.17].

Consequently,
z=0. [H.19]
Moreover, since f is an even function of e, we have in [H.16], from the normalization
condition imposed on f, that

fd’e=1. [H.20]

Likewise, since f is an even function of A, (cf. [10.58]), the last integral in [H.16] can be
expressed as half the comparable value over the entire unit sphere. In this manner one
obtains

ee) = e*e®(l — 4y) + A,A,> + 0(A?), [H.21]
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in which
A8 = PAASA,)de. [H.22]

and

Vo= f J (1 — cos ©)f (O, ®)sin © dO db. [H.23]

=0 JO=0
The integral [H.22] can be evaluated by noting from [10.60] that
I 7K ¢InK

N T

or, using [H.2].

¢ c .
(AA D> = ~(c € — ac, + c,C,y - 6C In K. [H.24]
From [H.19] this yields
_lfeep ey}
(AA D = 5( c + MCzr =3C71, [H.25]

which applies irrespective of whether or not A is symmetrical.

The integral [H.23] can be asymptotically evaluated by observing that f is nonzero only
in the immediate vicinity of the pole @ = 0. Thus, expansion of the trigonometric functions
in © for small ©, with use of [H.18] yields

2n A
=1K™! f J exp[—(C, cos? ® + C,sin’ ®)0?10° dO. [H.26]
¢=0vO=0

However, from [H.4] and [H.5] we have asymptotically that
—ZJ f exp[—(C, cos*® + C,sin? )00 dO.
=0 ve=0

ince cos* ® + sin® @ = I.it readily follows from this that the integral appearing in [H.26] is
Si 2® + sin ® = 1.itreadily follows f) his that the i 1 ingin[H.26]1

1[0k | 0K,
2\ac, T ac,

Consequently,

I{ ¢
o In K. H.271
! 4((’(‘1 ("CZ} n [H.27]

Comparison with [H.24] shows that
v =5t A A, [H.28]
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and thus from [H.25],

It 1
A = 1 -1 = - |— — H29
[ 8 tr(C ) 8 Cl + Cz) [ ]

Substitution of [H.25] and [H.29] into [H.21] thereby yields
eed =[1 — Ltr(C Y)Jeve* +4iC™! [H.30]

to terms of dominant order in D, !. Note that since tr (e*e®) = e*-e® = 1 this result
correctly reduces to the form tr (ee) = 1, a necessary consequence of the fact thate.e = 1.

The values of the normalization constant [H.10] and the second moment [H.30] differ
from the values obtained by Hinch (1971), namely

2
KHinch = ‘7; det C,

and
(e = €*e* + C7 1L

That our values for these two parameters, rather than Hinch’s, are correct can be confirmed
by reference to a particular example, where the exact orientational distribution function
is known for any degree of intensity of the Brownian movement, by then passing to the
limiting case where D, — 0.

With this in mind, consider the axisymmetric extensional flow field [5.1] for the case where

BG > 0. [H.31]
With use of [5.3] and [5.4], equation [10.16] gives
H = (1/2)BG(3i5i; — I). [(H.32]

As can be demonstrated from [10.17] and [10.18] (Brenner 1972a, 1972¢), in the absence of
rotary Brownian motion an axisymmetric body for which [H.31] holds adopts a stable
terminal orientation given by

e* = ij. [H.33]
As thereupon follows from [10.19], the eigenvalue corresponding to this orientation is
h = BG. [H.34]
Equation [10.34] thus yields
A = —(3/2)BG(i,i; + i,i,). [H.35]

The eigenvalues of this symmetric dyadic are 4, = 4, = —3BG/2. (Both being negative,
this confirms the stability of the terminal orientation [H.33]).
From [10.59] we find that

C = ililC] + izizCz, [H.36]

J.M.F., Vol. 1, No. 2—}
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in which
C, = C, = 3BG/4D, = &2, say. [H.37]
where £ is the dimensionless parameter defined in [5.10], A there being BG/D, (cf. [4.16]).
Substitution of [H.36], [H.37] and [5.5] into [10.62] now yields
1
f(0) = — E2 exp (— &7 sin? 6) [H.38]
2n
for the value of the distribution function in the limit where & » 1. From [5.6] and [5.7a].
upon putting cos? 8 = 1 — sin? 0, the exact value of the distribution function for this case is
f(0) = (K') " Pexp (— &2 sin? 6), [H.39]
in which
K’ = 4né™ 'D{é), [H.40]

where D(&) is Dawson’s integral, defined in [S.8]. For £ » 1 we have the asymptotic
expansion*

1 1 1-3  1-3-5 ’
D&Yy = —11 —— e — e b 4
(&) 25[ + 7% + s2g3 + 736 + } (H41]
whence we obtain
K' = 2n/&% foré» 1. [H.42)

Substitution into [H.39] yields a result identical to [H.28]. This calculation confirms the
correctness of the normalization constant [H.10].

Similar confirmation of the second moment expression [H.30] is furnished by the present
example. From [H.36], [H.37] and [H.33] we obtain

(eed> = izi; + (I — 3isi;) ;&5 [H.43]

The exact value for arbitrary & is given by [5.11] and {5.12a]. With use of [H.41] we find that

1 1

F&O=1-5+ 0(—4) for & » 1.
< <

Substitution into [5.11] then yields a result identical to [H.43], thereby confirming the

correctness of [H.30].

* This semi-convergent expansion can be obtained by methods similar to those utilized in obtaining the
asymptotic expansion of the complementary error function (Carslaw & Jaeger 1959). That this expansion yields
accurate results can be confirmed by reference to the numerical values of Dawson’s integral tabulated by
Abramowitz & Stegun (1968).
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Sommaire— Des résultats explicites sont présentés pour les propriétés rhéologiques complétes de
suspensions diluées de particules Browniennes axisymmeétriques rigides possédant une symétrie
avantarriére lorsqu’elles sont suspendues dans un liquide Newtonien soumis a4 un écoulement de
cisaillement tri-dimensionel général, soit équilibré soit déséquilibré. Il est montré que ces propriétés
rhéologiques peuvent étre exprimées en fonction de cinq constantes fondamentales matérielles (a
I’exclusion de la viscosité du solvant) et qui ne dépendent que de la grandeur et de la forme des
particules suspendues. Des expressions sont présentées pour ces constantes scalaires pour un
nombre de solides de révolution, y compris les sphéroides, les haltéres de rapport d’aspect arbitraire
et les corps longs et minces. Celles-ci sont utilisées pour calculer les propriétés rhéologiques d’une
variété d’écoulements de cisaillement différents, y compris les écoulements uniaxiaux et biaxiaux
extensionels, les écoulements de cisaillement simples et ceux bi-dimensionels généraux. 1l est
démontré que les propriétés rhéologiques applicables 4 un écoulement de cisaillement général
bi-dimensionel peuvent étre déduites immédiatement de celles d’un écoulement de cisaillement
simple. Cette observation accroit grandement l'utilit¢ d’une grande partie de la littérature sur
I’écoulement Couette, surtout les calculs numériques étendus de Scheraga et al. (1951, 1955).

La communalité de nombreux résultats disparates, répandus et diffusés dans des publications
antérieures est soulignée et présentée d’un point de vue unifi¢ hydrodynamique.

Auszug—Es werden bestimmte Ergebnisse fiir die vollstindigen Rheologieeigenschaften verdiinnter
Suspension von starren, achsensymmetrischen Brown’schen Teilchen dargestellt, welche langs-
laufende Symmetrie besitzen, wenn sie in einer Newton’schen Fliissigkeit unter EinfluB eines
allgemeinen dreidimensionalen Scherflusses, gleichmidBig oder ungleichmiBig, aufgeschlimmt
werden. Es wird gezeigt, daB diese Rheologieeigenschaften in Form von fiinf elementaren Material-
konstanten ausgedriickt werden konnen (ausschlieBlich der Viskositit des Losungsmittels), welche
nur von den GréBen und Formen der Suspensionsteilchen abhingen. Es werden Ausdriicke fiir
diese skalaren Konstanten fiir eine Anzahl fester Rotationskérper, einschlieBlich Sphiroiden,
Hanteln von belicbigem Langenverhiltnis und langen, schlanken Kérpern dargestellt. Diese
werden zur Berechnung rheologischer Eigenschaften fiir eine Auswahl verschiedener Scherfliisse
verwandt, einschlieBlich einachsiger und zweiachsiger Streckungsfliisse, einfacher Scherfliisse und
allgemeiner, zweidimensionaler Scherfliisse. Es wird dargestellt, daB die, zu einem allgemeinen,
zweidimensionalen ScherflB gehdrigen, rheologischen Eigenschaften sofort von den Eigenschaften
fiir einen einfachen Scherflul abgeleitet werden kénnen. Diese Beobachtung vergroBert die
Niitzlichkeit von vielen der Schriften vor der Conette FlieBliteratur, besonders der ausfithrlichen
zahlenmiBigen Berechnungen von Scheraga er al. (1951, 1955).

Es wird die Allgemeinheit vieler unvereinbarer Ergebnisse betont, die in fritheren Veroffent-
lichungen verstreut und verteilt waren, und diese werden von einem einheitlichen hydrodynamischen
Standpunkt aus dargestellt.

Pe3lome —[IpenctaBasioTca  MCHEpNBIBAIOLIME Ppe3YNbTAaThl HA MNOJHBIE PEOJOrHYECKHE
XapaKTEPUCTHKH Pa3baBIeHHbIX CYCNIEH3MH XKECTKHX, OCECHMMETPHYHBIX BpoyHHaAHOBEHIX yacTHi
HMEIOLINX CHMMETPHIO BO BCIO [/IMHY, KOTA3 OHH B3BELUCHbI B HbIOTOHOBCKOH KHIKOCTH.
NOABEPKEHHOH 06IIEMY YCTAHOBHBLIEMYCR WJIH HEYCTAHOBHBIIEMYCH TPEXMEPHOMY TEYEHHIO C
NONepeYHLIM I'PATHEHTOM CKOPOCTH. J|eMOHCTPHPYETCA, HTO ITH PEOSIOTHIECKHE XAPAKTEPHCTHKH
MOXHO BLIPAa3HTb B MATH OCHOBHBIX MAaTepPHAJIBHBIX KOHCTAHTAX, HCK/II0YafA BS3KOCTH
pacTBOPHTENA, 3ABHCALUEH TONBKO OT pa3Mepa M (OpMbI B3BeWeHHBIX YacTul. JlaroTcs
BbIDXEHHS ITHX CKAJAPHBIX KOHCTAHT HA TeHa BpalleHns cHEePOUIOB, raHTeNedl NPOU3BOJBLHOr0
BHIa U JUTMHHBIX TOHKHX Tesl. OHH IPHMEHSIOTCS IS BLIYHCIIEHHS PEOJIOTHYECKHX XaPAKTEPHCTHK
pasiHYHbIX THMOB TEYEHHH € MONEPEYHBIM TPAJMEHTOM CKOPOCTH, BKJIIOY4 OJHOOCHBIE M
JIBYXOCHbIE TeYeHHs, NPOCTbIE TEYEHHA C MNONEPEYHBIM TPAJUEHTOM CKOPOCTH, H obutue
ABYXMEPHbIE TEYEHHA C IONEPEYHBIM IPAJHEHTOM ckopocTd. Hawnu, 4to peosioruueckue
XapaKkTePUCTHKH MOpHCywne obueMy NBYXMEPHOMY TEYEHHIO C MNONEPEYHBIM T'PAJAMEHTOM
CKOPOCTH MOXHO BBIBECTH M3 XaPaKTEPHCTHK NPOCTOrO TEYCHHS C MOMEPEYHBLIM IPATHEHTOM
CKOPOCTH. DTO ONpeNeNeHHE HA MHOTO [IOBBIIAET LEHHOCTL IPEXHEH JMTEPATYPH O TEYCHHH
KystTa. ocobenno, uncnennsie pacyeTsl Llepara u ap. (1951, 1955 r).

B utore, sToit paboToii nptaeTcs 0cofoe 3HAUCHHE MHOTHM OT/IHYAIOLMMCA APYr OT JApyra
pe3yJbTaTaM H BOTIPOC PEONOTHYECKMX XapPAKTEPUCTHK NPECTABIAETCA ¢ YHUPHIMPOBaHHON
THAPOAHHAMHHYECKOH TOYKH 3pEHHs.
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