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Abstract--Explicit results are presented for the complete rheologicai properties of dilute suspen- 
sions of rigid, axisymmetric Brownian particles possessing fore-aft symmetry, when suspended in 
a Newtonian liquid subjected to a general three-dimensional shearing flow, either steady or unsteady. 
It is demonstrated that these rheological properties can be expressed in terms of five fundamental 
material constants (exclusive of the solvent viscosity), which depend only upon the sizes and 
shapes of the suspended particles. Expressions are presented for these scalar constants for a number 
of solids of revolution, including spheroids, dumbbells of arbitrary aspect ratio and long slender 
bodies. These are employed to calculate rheological properties for a variety of different shear flows, 
including uniaxial and biaxial extensional flows, simple shear flows, and general two-dimensional 
shear flows. It is demonstrated that the rheological properties appropriate to a general two- 
dimensional shear flow can be deduced immediately from those for a simple shear flow. This 
observation greatly extends the utility of much of the prior Couette flow literature, especially the 
extensive numerical calculations of Scheraga et al. (1951, 1955). 

The commonality of many disparate results dispersed and diffused in earlier publications is 
emphasized, and presented from a unified hydrodynamic viewpoint. 
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1. I N T R O D U C T I O N  

A very substantial body of literature exists pertaining to the rheological properties of 
dilute suspensions of rigid, neutrally buoyant, axisymmetric Brownian particles suspended 
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in Newtonian liquids and subjected to homogeneous shearing flows, especially simple shear 
flows. (See, for example, the extensive reviews of Bird, Warner & Evans 1971 and Brenner 
1972b.) Examples of bodies of revolution which have been studied in this manner are 
spheres (Einstein 1906, 1911), spheroids (Scheraga 1955, Giesekus 1962a, Brenner 1972a, 
Brenner & Condiff 1974, Leal & Hinch 1971, Hinch & Leal 1972, 1973), near spheres (Leal & 
Hinch 1972), "non-interacting" and "first-order" spherical dumbbells (Bird, Warner & 
Evans 1971, Bird & Warner 1971, Stewart & Sorensen 1972), spherical dumbbells of arbi- 
trary aspect ratio (Wakiya 1971, Nir & Acrivos 1973), and long slender bodies possessing 
either pointed or blunt ends (Okagawa, Cox & Mason 1973). For the latter two classes of 
bodies rheoiogical calculations have only been performed for situations in which the rotary 
Brownian movement is supposed negligible, and then only for the case of simple shear 
flows. Neglect of rotary diffusion leads to an indeterminacy in the rheological calculations 
of the type originally encountered by Jeffery (1922) in connection with spheroidal particles. 
This indeterminacy stems from the lack of a unique, time-independent distribution of par- 
ticle orientations in such circumstances. 

In general, apart from the work of Cox & Brenner (1971)--which does not explicitly 
include the rotary Brownian movement--the pertinent rheological theory has been 
developed anew for each different particle shape, and for each different type of homogeneous 
shear, e.g. simple shear and extensional flows. Moreover. even when both of these charac- 
teristics were fixed, it was generally left to different investigators to separately investigate 
the asymptotic behavior in the limits of both small and large rotary P~clet numbers 
(i.e. dominant and weak rotary Brownian movement). This has produced a diffuse and 
unwieldy body of literature on the subject, especially when one considers that those 
investigations which have been based upon energy dissipation methods (in contrast to 
dynamical methods) generally fail to yield complete rheoiogical information in regard to 
such items as normal stresses. The difficulties of conceptually organizing all this information 
in a coherent manner are even further compounded by the inclusion of ~msteady (homog- 
eneous) flows in the class of fluid motions of rheological interest. 

The only serious (and successful) attempt to date to present these rheological results 
within a unified conceptual framework is that of Bird et al. (1971) and Armstrong & Bird 
(1973), who limit themselves primarily to "non-interacting" dumbbells. (Indeed, they go 
even further by including non-rigid dumbbells, as for example in the case where the spheres 
comprising the dumbbell are connected by a Hookean spring.) Unfortunately, the "non- 
interacting" dumbbell constitutes a very special, indeed sometimes singular, case of a body 
of revolution, so that the quantitative connection between their dumbbell results and the 
analogous body of literature on spheroids is not evident. In particular, their analysis fails 
to stress the fundamental hydrodynamic theme common to all these problems, including 
non-axisymmetric bodies of any shape whatsoever. 

In this paper we furnish a general dynamical rheological theory for axially symmetric 
particles (possessing fore-aft symmetry) which subsumes within its purview all prior rigid- 
body results in the literature as special cases. In particular, it is demonstrated that the 
rheoiogical properties of dilute suspensions of such bodies, including the rotary Brownian 
diffusion, can be expressed in terms of the volume fraction of suspended particles, the 
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viscosity of the homogeneous Newtonian carrier fluid, and five nondimensional scalar 
material constants which depend only upon the shape of the suspended particles, This con- 
clusion applies to any type of homogeneous shear flow, either steady or unsteady. 

These five fundamental material constants are purely hydrodynamic in origin, and ma? 
be derived from the solution of the quasistatic Stokes equations for a single t~anslating- 
rotating axisymmetric particle of requisite shape suspended in a simple shear flow. To cal- 

culate the values of these constants it suffices to consider only the two special cases where 
the symmetry axis of the particle lies parallel and perpendicular, respectively, to the stream- 
lines of a simple shear flow, the symmetry axis being perpendicular to the vorticity vector 
in both cases. Though these fundamental hydrodynamic constants are derived from the 

solution for a steady simple shear flow in the absence of rotary diffusion, the constants thus 
obtained are sufficient to calculate theological properties for any homogeneous shear flow, 
simple or not, and steady or not, including the case where the rotary Brownian motion is 

sensible. The Stokes-Einstein equations (Brenner 19671 furnish the necessary link between 
low Reynolds number hydrodynamics and rotary diffusion. 

Though attention is confined to axisymmetric particles, the manner in which the subse- 
quent theory may be applied to any centrally-symmetric particles, or indeed particles of 
arbitrary shape, will be reasonably self evident. 

The theory derived here is used to weave together disparate and fragmentary results 
dispersed in the prior literature, presenting these known results in a more general context. 
and deriving several new results along the way---especially for the cases of dumbbells of 
arbitrary aspect ratio and long slender bodies, in particular, it is pointed out that, contrary 
to what is commonly assumed, circular cylindrical rods are not adequately modelled by 
long thin prolate spheroids. Whether the ends of the particle are "'pointed" 4as in the case 
ofa  prolate spheroidt or "blunt" tas in the case of a cylindrical rod} proves crucial in relating 
rheological and analogous transport properties to the longitudinal and transverse dimen- 

sions of the long slender body. 
Present results are also relevant to theories of streaming birefringence, since two of the 

five "theological" parameters (B and Dr) are identical to those appearing in birefringence 
theories of the Peterlin & Stuart (1939a, 1939b) type. Moreover, the same orientational 
distribution function is common to both phenomena. 

The remainder of this Introductory section is devoted to a summary of the essential 

contents of the present paper. 
In Section 2 expressions are written down for the hydrodynamic force, torque and 

+'stresslet" exerted by an incompressible Newtonian fluid upon an isolated, translating- 
rotating, rigid particle of arbitrary shape suspended in a general homogeneous shearing 
flow which extends to infinity. Rotational Brownian motion is not considered. These three 
dynamical parameters are linear functions of the viscosity of the carrier fluid, and of the 
translational and rotational slip velocities between particle and fluid, as well as of the un- 
disturbed rate of strain. The proportionality coefficients in these linear relationships are 
second, third and fourth rank material tensors [and pseudotensorst, dependent solely upon 
the geometrical configuration of the wetted particle surface: that is, upon the size and shape 
of the body. The general forms adopted by these material tensors for an axially symmetric 
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panicle possessing fore-aft symmetry (i.e. a center of symmetry) are deduced by geometric 
symmetry arguments, and expressed in terms of a body-fixed unit vector ei drawn along the 
axis of revolution of the body. The proportionality coefficients appearing in these expres- 
sions, relating the material tensors to various linear combinations of the tensors e~ei" • • e~et 
of appropriate tensorial rank, are scalars. These material scalars are dependent only upon 
the size and shape of the axisymmetric body. 

Of these material scalars arising in the expressions for the force, torque and stresslet 
exerted on a body of revolution, only eight are independent. Of these, two are irrelevant to 
the rheological theory, which pertains to force-free particles, and a third is irrelevant in 
consequence of the fact that rotation of the body about its symmetry axis does not alter 
the orientation of this axis, thereby constituting a "dead" degree of freedom. Hence, the 
intrinsic rheological properties of a dilute suspension of identical, hydrodynamically non- 
interacting, force-free, rigid, axisymmetric, Brownian particles are ultimately determined 
by the remaining five material constants. One of these plays a dual role, in that it also enters 
as a hydrodynamic resistance coefficient in a Stokes-Einstein equation for the rotary dif- 
fusion coefficient. Hence, in this role, it appears as a parameter in the partial differential 
equation governing the orientational distribution function. 

Various inequalities imposed upon these material constants by the positive-definite 
nature of the mechanical energy dissipation are derived in Section 2. 

Explicit expressions for these five material constants (as well as certain auxiliary con- 
stants derived from these) are obtained in Section 3 for various axisymmetric bodies pos- 
sessing fore-aft symmetry, including spheroids (with spheres, circular disks, and long thin 
prolate spheroids as special cases), long slender bodies possessing either pointed or blunt 
ends, and spherical dumbbells of arbitrary aspect ratio, including the limiting case where 
the spheres touch. Limiting expressions are also obtained for "non-interacting" dumbbells 
(composed of rigidly-connected spheres situated so far apart as to asymptotically satisfy the 
condition of no hydrodynamic interaction between them), as well as for "first-order" dumb- 
bells (in which hydrodynamic interactions among the two spheres composing the dumb.bell 
are taken account of, to terms of first order in the ratio of sphere radii to center-to-center 
separation distance). Dumbbells of these latter types are of special interest in connection 
with the rheological properties of "stiff" macromolecular chains (Bird et al. 1971). 

Material constants for the long slender bodies and dumbbells are extracted from the 
respective analyses of Cox (1970, 1971) and Okagawa et al. (1973), and of Wakiya (1971), 
each of which pertains only to the case of a steady simple shearing motion in the absence of 
rotary diffusion. Despite the restricted nature of the special class of problems from which 
these coefficients were extracted, the constants themselves suffice to analyze much more 
general rheological problems, including arbitrary homogeneous shearing flows (steady or 
unsteady) in circumstances where rotary diffusion is sensible. Such is the advantage of the 
broader context advocated in the present paper. 

Section 4 provides a general theory of the rheological properties of suspensions of the 
type under consideration, correct to terms of the first order in the volume fraction of 
suspended particles. In particular, an expression is derived relating the mean deviatoric 
stress in the suspension to the mean velocity gradient (or, equivalently, the mean rate of 
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strain tensor and mean vorticity vector) for steady, homogeneous shearing flows. In general, 
this relation (cf. [4.27]) is highly nonlinear. Utilization of this theory requires knowledge 
of the five fundamental material constants, as well as the second moment of the ori~ntational 
distribution function. The latter can be calculated by solving the second-order partial dif- 
ferential equation governing this distribution function. For a prescribed mean velocity 
gradient, the only parameters appearing in the latter equation are two of the above five 
material constants. Hence, no new material constants are required to parametrize the 
second moment. In turn, this leads to the conclusion that the original five material constants 
suffice for a complete rheological theory. 

The remainder of the paper is devoted to various applications of the general theory out- 
lined in Section 4 to various important classes of shearing flows. 

Calculations are presented in Section 5 of the explicit rheological properties arising 
during axisymmetric (i.e. uniaxial) extensional and compressive flows. It is demonstrated 
that the rheological behavior encountered during such flows can be represented by a single 
scalar viscosity coefficient, which is a function of the fractional rate of elongation G, all 
other things being equal. Through use of an exact expression for the dependence of the 
orientational distribution function upon G, an expression is derived for the variation of the 
intrinsic viscosity function with G, represented in dimensionless form by a rotary P6clet 
number P = G/D,. Asymptotic values of this intrinsic viscosity, derived from the exact 
solution, are given for both small and large P. Graphs depicting the variation of intrinsic 
viscosity with dimensionless deformation rate are given for both oblate and prolate spheroids 
of various aspect ratios over the entire P6clet number range, - ~ < P < ~. 

In agreement with the numerical calculations of Clarke 11973) for this case, it is found 
that the rheological behavior is of the shear-thickening type for oblate spheroids over the 
complete range of shear rates, - ~ < G < ~ .  However, for prolate spheroids this behavior 
obtains only for compressional flows. For prolate spheroids in extensional flows this beha- 
vior changes from shear thickening to shear thinning beyond a certain dimensionless shear 
rate (which depends upon the axis ratio of the spheroid) for circumstances in which the 
axis ratio exceeds 10.473. 

Section 6 is devoted to a comparable rheological study for plane (i.e. two-dimensional. 
biaxial) extensional flows. In contrast with the uniaxial case of Section 5, theological 
properties are no longer completely described by a single, shear-dependent viscosity func- 
tion. Rather, two "normal" stress functions are now required. An exact expression is obtained 
for the dependence of the orientational distribution function upon the (dimensionless) rate 
of extension, and this is employed to derive explicit expressions for the variation of the 
intrinsic normal stresses with rotary P6clet number over the complete range of P6clet 
numbers. Results are presented graphically for both oblate and prolate spheroids, and 
limiting asymptotic expressions are derived for both small and large extensional rates. 

Rheological properties are derived in Section 7 for general homogeneous shear flows, but 
only for small dimensionless shear rates (i.e. small rotary P6clet numbers). This restriction 
in the range ofapplicability comes about through the inability to obtain an exact solution for 
the orientational distribution function valid for all P~clet numbers. The (time-independent) 
Jaumann derivative, which expresses the proper material frame-indifference of the rheo- 
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logical constitutive equation when account is taken of material rotation, appears explicitly 
in the general constitutive relation for the mean deviatoric stresses. The appearance of this 
derivative stems directly from its original appearance in the expression for the orientational 
distribution function, which must itself manifest such invariance. That is, the distribution 
of particle orientations must he measured relative to the rotating material, if it is to possess 
physical significance. It is demonstrated, inter alia, that in the limit of zero P6clet number, 
where the disorienting effect of the rotary diffusion dominates over the orienting effect of 
the hydrodynamic stresses on the suspended particles, the rheological behavior is New- 
tonian. This corresponds to the case where the distribution of particle orientations is iso- 
tropic. Non-Newtonian behavior in rigid-particle suspensions generally arises from the 
anisotropic distribution of particle orientations engendered by the shear and vorticity 
fields. 

Special attention is devoted in Sections 8-10 to the case of simple shear flows, the latter 
two sections being reserved for a discussion of the limiting behavior at large rotary P6clet 
numbers. In general, rheol0gical behavior in simple shear flow can be expressed in terms 
of three viscometric functions--a viscosity function and two normal stress functions--each 
of which is generally shear-rate dependent. General expressions are derived for these visco- 
metric functions in terms of material constants and three goniometric functions, each of 
which depends only upon the second moment of the orientational distribution function. 
These goniometric factors, which are fundamental to the theory of simple shear flow, depend 
upon the rotary P6clet number P and the dimensionless parameter B (derivable from the 
five basic material constants). 

Analytic expressions which apply for BP << 1 are deduced for these goniometric factors 
by specializing the general results of Section 7. These, in turn, are utilized to obtain expres- 
sions for the three viscometric functions, valid for the case of small P~clet numbers. Where 
possible, these results are compared with prior results in the literature for spheroids, and 
"non-interacting" as well as "first-order" dumbbells. 

Special attention is devoted to the limiting case where B = 1, which arises in the case of 
"non-interacting" dumbbells, as well as for other long-thin bodies of large aspect ratio. 
Here, by adaptation of the theological results reported by Stewart & Sorensen (1972) for 
dumbbells, it proves possible to extract the goniometrical factors (appropriate to the value 
B = 1) over the complete range of P~clet numbers, 0 _< P < ~ .  These goniometrical fac- 
tors may then be applied to suspended particles other than dumbbells. It is pointed out that 
use of the "first-order" dumbbell theory of Bird & Warner (1971) and Stewart & Sorensen 
(1972) may result in appreciable errors in rheological calculations pertaining to such dumb- 
bells, especially at large P6clet numbers. 

By means of a simple transformation, the numerical values for the goniometrical factors 
derived from the Stewart-Sorensen work for B = 1 may also be utilized for the case where 
B = - 1. These results then lead a calculation of the rheological properties of a suspension 
of circular disks in a simple shear flow over the complete range of P6clet numbers. 

The numerical calculations of Scheraga et al. (1951, 1955), relating to the viscosity and 
streaming birefringence functions for prolate and oblate spheroids, are inverted so as to 
obtain the requisite goniometric factors as a function of B (or, equivalently, the "equivalent 
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axis ratio" re) and of the Peclet number in the ranges - 1 < B < 1 and 0 _< P _< 60. 
Though derived from results pertaining to spheroids, these goniometric factors apply to 
any axisymmetric particle. In the limit where B ~ 1 these three quantities show excellent 
agreement with the comparable numerical values derived from the Stewart & Sorensen 
(1972) analysis. These goniometric factors are employed to compute the normal stress 
functions for suspensions of prolate and oblate spheroids subjected to a simple shear flow, 
the viscosity function for such bodies already being available from the work of Scheraga 
(1955). These are compared with analytical asymptotic results derived for both small and 
large P. The primary and secondary normal stresses are of opposite algebraic sign. each 
increasing in magnitude from zero at zero shear rate li.e. P = 0 / to  a finite upper limit at 
infinite shear rate IP = ~ I. 

The Scheraga tabulation ofgoniometric factors in Section 8 is limited to values o f P  < 60 
in consequence of the rather slow numerical convergence of the doubly-infinite series used 
in their computation for values of P greatly in excess of 60. With this limitation in mind, 
Leal & Hinch (1971) and Hinch & Leal (1972) in a series of papers developed asymptotic 
solutions for spheroids, valid for the case where P >> 1. Since spheroids possess the property 
that IBI < 1, this same restriction applies to the Leal-Hinch analysis. Section 9 is essentially 
a recapitulation of the Leal-Hinch theory, but adapted to axisymmetric particles of any 
shape. (The comparable problem for tBt > 1 is considered in Section 10./ 

3 Two possible situations arise according as P >> r e + r,7 3 ("weak" Brownian motion) 
or ~ + r j  3 >> P >> 1 Cintermediate" case), wherein r c = [(B + 1 ) / ( B  - l)! ~2. Numerical 
values of the goniometric factors for the ~'weak" case are shown to be in quite good agree- 
ment with the results of Scheraga e t  a l .  in the common region of overlap, thereby strengthen- 
ing confidence in the numerical credibility of both sets of computations. In the "'inter- 
mediate" case, large uncertainties exist in the Hinch & Leal (1972) numerical coefficients 
entering into the calculation of the goniometric factors. Here, the calculations of Stewart & 
Sorensen (1972) were employed to obtain presumably more accurate values for these coef- 
ficients than those given in the original Hinch & Leal i1972) paper. The goniometric factors 
for the "intermediate" case obtained in this manner show modestly good agreement with the 
numerical calculations of Scheraga in their common domain of validity. 

The results of these large P6clet number asymptotic expansions are employed to obtain 
expressions for the viscometric functions appropriate to several different body shapes. A 
minor error in the Hinch & Lea111972t expressions for the primary normal stress differences 

for spheroids is corrected. 
The asymptotic analysis for P >> 1 appropriate to bodies for which tBi > 1 is vastly 

different from that which obtains for IB! < 1. In particular, in the absence of rotary dif- 
fusion (P = zc t, and when iBt > 1, an axisymmetric body ultimately adopts a unique ter- 
minal orientation (relative to the principal axes of shear) which is independent of its initial 
orientation. In contrast, when rotary diffusion is absent, and when IBk < 1, the body under- 
goes a periodic rotation of the type first encountered by Jeffery (19221 for spheroidal par- 
ticles. Whereas the limiting process P --+ zc is singular for IBt < 1 it is uniform for ]B] > 1. 
Calculation of the goniometric factors for P >> 1 and tBI > 1 is brought to fruition in 
Section 10 by use of a method outlined in Hinch's (1971) thesis, after correcting an error in 
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the latter's work. In effect, the orientational distribution function is Gaussian about the 
direction of the terminal orientation which obtains when the Brownian motion is wholly 
absent. 

It is pointed out in Section 11 that the distribution function and concomitant moments 
thereof, required to compute the theological properties for any two-dimensional flow (other 
than an irrotational flow), can be deduced directly from those for a simple shear flow by an 
appropriate re-interpretation of the physical significance of the rotary parameter B and 
shear rate G. Thus, the simple shear flow results of Sections 8-10 can be immediately 
adapted to calculate the rheological properties which obtain in almost every two- 
dimensional flow. 

Reference is also made in Section 11 to Wayland's (1960) analysis of streaming bire- 
fringence in dilute suspensions subjected to arbitrary two-dimensional flows. The same 
goniometric factors required to calculate rheological properties appear in the streaming 
birefringence problem too. Rather than referring the distribution function to a system of 
material axes, Wayland chooses instead a set of rotating axes which, while translating with 
the fluid, maintain a fixed orientation relative to the local direction of the (generally curved) 
streamlines. It is demonstrated that the distribution function and, correspondingly, the 
requisite goniometric factors relative to such "intrinsic" axes are directly calculable in 
terms of comparable functions already available for a simple shear flow. This is done by 
means of an appropriate re-definition Of the significance to be attached to the rotary para- 
meter B and shear rate G. Once again, then, the detailed results of Sections 8-10 are shown 
to be adaptable to the solution of a rather more general class of two-dimensional flow prob- 
lems than the simple shear for which they were originally derived. 

Section 12 furnishes a general analysis of the theological properties of a dilute suspension 
of axisymmetric Brownian particles subjected to an arbitrary unsteady flow. In particular, 
a general relation is derived expressing the deviatoric stress in terms of the time-dependent 
shear and vorticity tensors, and the second moment of the orientational distribution func- 
tion. The same five material constants required for the rheological characterization of 
steady flows serve to uniquely characterize these unsteady flows too. The time-dependent 
Jaumann time derivative, which expresses the proper material frame-indifference of the 
rheological constitutive relation under rotation of the reference frame, arises naturally in 
the theory, without a priori anticipation of its appearance. By way of example, a detailed 
solution is given for the stress relaxation following the abrupt cessation of an arbitrary, 
steady flow. It is demonstrated, at least for the case where the prior steady flow is a simple 
shear, and for the case where P << 1, that the analysis yields results for the stress in agree- 
ment with the detailed calculations of Bird er al. (1971) for idealized dumbbells composed 
of non-interacting spheres. 

2. M A T E R I A L  T E N S O R S  

Consider a single solid particle of arbitrary shape undergoing translation and rotation 
in an unbounded incompressible Newtonian fluid subject to a homogeneous shear v ® at 
infinity. Denote by O an arbitrary origin fixed in the particle. Let U be the translational 
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velocity of this point and II  the angular velocity of the particle. 
The undisturbed homogeneous shearing flow at infinity may be characterized by the 

constant velocity gradient tensor, 

= rr*. [2.1] gi j  j , , ,  

of which the symmetric and antisymmetric parts may be represented, respectively, by the 
symmetric rate of shear tensor, 

"~iij = Sji ~'~ ½(gi j  + g j i ) '  [2.2] 

and the antisymmetric vorticity tensor 

'1 - [ 2 . 3 ]  2;j = -2j;  = ~ gji gij), 

or, alternatively, the vorticity vector 

1 ~"; = ~%k%- [2.4] 

with %k the permutation symbol. In terms of these, the undisturbed shear flow may be 
expressed in the form 

r i" = r'[ + % k % X k  + S i jX j ,  [2.5] 

wherein v ° denotes the value of the undisturbed shear flow at the point in the fluid presently 
occupied by the O, x being the position vector measured relative to this point. 

All relevant Reynolds numbers based on particle size, translational and rotational 
velocities, and shear rate, are assumed sufficiently small compared with unity to justify 
neglecting nonlinear terms in the Navier-Stokes equations. Thus, the fluid motion (v, p) 
in the presence of the suspended particle is supposed governed by the quasistatic creeping 
motion equations 

V2v=#o lV~ ,  V . v = 0 ,  [2.6a, b] 

in which #o is the viscosity of the homogeneous fluid. The no-slip boundary condition 
leads to the requirement that 

r i = U i + ~;i jk~;Xt  [2.7] 

at the particle surface. Moreover. at large distances from the particle, 

ri - r2* as txl- ,  73, [2.83 

corresponding to the requirement that the disturbance due to the presence of the particle 
in the shearing flow be attenuated at infinity. 

In consequence of the linearity of the differential equations and boundary conditions, 
the hydrodynamic force F, torque L (about O), and stresslet* A, exerted by the fluid on the 
particle are linear vector functions of the translational slip velocity U - v °, the rotational 

* This  stresslet  is re la ted  to Ba t che lo r ' s  11970) stresslet  S '  via the re la t ion  A~i = Sij51~oVp. 



RHEOLOGY OF A DILUTE SUSPENSION OF AXISYMMETRIC BROWNIAN PARTICLES 205 

slip velocity f l  - to, and the shear s. In the notation of Brenner (1972a) we therefore have 
that 

F, =/ao['~o(vy - Uj) + c/~,(to i - flj) + ~o~sr~], [2.9] 

L, = ~o [cg,r(vy - Ur) + "~,r(to~ - fir) + i , ~ s r d ,  [2.10] 

Ai r = Mirk(v~ - Uk) + Nok(Oh, - f~k) + Qijusu • [2.11] 

The material tensors '/~o . . . . .  Qo~ in these relations are intrinsic properties of the particle 
alone, being dependent only upon its size and shape, i.e. only upon the geometric con- 
figuration of its wetted surface. These particle material tensors are constants relative to 
body-fixed axes, locked into the particle, which translate and rotate with the body. Follow- 
ing Brenner (1972a), in place of the careted material tensors in the expression for the torque. 
it proves convenient to introduce the related tensors 

eK~ r = cf( i j /6V p, rKij = rgi j /6Vp,  "cij k = "Cijk/6Vp, [2.12a, b, c] 

where lip denotes the particle volume. 
In consequence of the symmetry relation sir = s~i, one may arbitrarily set 

~ijk = ~)ikj' "~ijk = Zikj' QijkI = Qijtk' [2.13a, b, c] 

leading to an appropriate reduction in the number of independent components of these 
tensors. Further reduction in this number occurs as a result of the incompressibility con- 
dition s.  = 0, but we shall not pursue the consequences of such details here. Moreover, in 
view of the relations A o = Aj~ and A. = 0 (Brenner 1972a) we may write without loss of 
generality that 

Mijk = Milk,  Nirk = Njik,  Qijkl "= Qjikl, [2.14a, b, c] 

and 

Miik = O, Nii k = 0 ,  QiiktSkl = 0 .  [2.15a, b, c] 

The summation convention on repeated indices is utilized throughout. 
In addition to these "trivial" symmetry relations, we have also the "kinetic" symmetry 

relations (Brenner 1964b) 

'l~iir = tl(ji, "Kit = "Kri, [2.16a, b] 

and (Hinch 1972) 

5VpNijk = %it, 5VpM*s* = ~*0, Qiju = Quo,  [2.17a, b, c] 

the first of which is equivalent to 

Nick = 6zuj. [2.18] 

Bodies possessing a center of symmetry possess the property that (Brenner 1964b, 1964e) 

c•ij = 0 ,  ~ijk = O, Mi j  k = 0 ,  [2.19a, b, c] 

provided that the origin 0 is chosen to lie at the center of symmetry. For such bodies, further 
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reduction occurs in the number of independent components of the five remaining material 
tensors, but again we shall not enter into such details in the general case. Of special interest, 
however, is the case of a body of revolution possessing fore-aft symmetry (i.e. a plane of 
reflection symmetry normal to the symmetry axis). Such a body possesses a center of sym- 
metry, which we will designate as the origin O. 

Denote by e a body-fixed unit vector drawn along the symmetry axis of such an axi- 
symmetric body, and let (el, e2, e3J be the components of this vector in any system of 
rectangular Cartesian axes (x  1, x 2. x3J, space-fixed or body-fixed. Then the forms adopted 
by the nonzero material tensors for such a particle are as follows:* 

K~j = e i e / &  ' + (6 u - eie f l 'R  . [2.20] 

rKi i  = e.e'K, ~ + (,5,.j - e i e f K =  . ['~ "1~ 

~rijk = (" ; t ike f i  + ":uke/eiJ/V. LF'~-'-~"~ 

riik ~ _ ( £ i j l e t e  k + ~:ikle~ei)~." ~.-- ,  "~~l 

Qijkl  = (6ikb,jl -4- o i lb jk )Q 1 Jr- (~Sijekel + bk l e i e  i - 3 e i e j e k e l J Q 2  

_ r ,  " ~ 4 i  + (3jkeiet + Oiteiek + 6~ke;et + 6j~e~ek 4eieseke~)Q3. L:-.'- J 

The validity of the first four of these relations is demonstrated by Brenner (1964b, 1964c). 
The last relation is new, its derivation being presented in Appendix A. 

All of the uncareted scalars in the above expressions are dimensionless. Though principal 
interest centers on circumstances where the axially symmetric body possesses fore-aft 
symmetry, we remark in passing that each of these forms applies (at the center of reaction 
of the body) even if the body lacks fore--aft symmetry (though the tensors tbUk and Mij k 
are then nonzero). In view of [2.18] the scalar coefficients N and r are not independent, but 
rather are connected by the expression 

6 
N = r .  [,_.-5j 

5 
It is readily verified that [2.20]-[2.24] satisfy all the general symmetry relations set forth 
earlier, which must apply irrespective of the geometric symmetry of the body. 

As will be demonstrated (cf. the remarks following [4.30]), knowledge of only the five 
dimensionless scalar coefficients 'Kz,  N (or ~), Q I ,  Q2 and Q3 suffices to formulate a com- 
pletely general theory of the rheological properties of dilute suspensions of identical axi- 
symmetric particles (including the effects of rotary Brownian movementj in arbitrary 
homogeneous shearing flows. Numerical values of these coefficients may be derived from 
the solution of the appropriate hydrodynamic problem posed by [2.6]-[2.8] for the body 
in question. Being dimensionless, these five "fundamental" scalar rheological material con- 
stants depend only on the external shape of the particle, but not its size. In Section 3 of this 
paper, values of these material constants are presented for a variety of differently shaped 

particles. 

* This section was written before the appearance of a paper by Nir & Acrivos (1973). which gives essentialb 
the same relations set forth in [2.20]-[2.24]. 
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In addition to the preceding material tensors, s e v e r a l  o t h e r s  derived from them arise in 
the subsequent rheological theory. These are discussed below. 

Define the tensor  BUk = 2"I~i7 ITUk. Equivalently, 

Bijk = 2"Ki7 t~Uk. [2.26] 

For a body of revolution this reduces to the form 

Buk = - ( e u l e t e  k + e, iklele~)B, [2.27] 

in which B is the dimensionless scalar, 

B = 2T/ 'K±.  [2.28a] 

Alternatively, from [2.25], 

B = 5 N / Y K L .  [2.28b] 

When B lies in the range - 1 < B < 1, we define the "equivalent axis ratio" re as* 

[1 +BI'/2 
re = t~-~---B] (IBt < 1). [2.29] 

This is equivalent to 

z 1 
r e - -  

B = - T - - -  (IBI < 1). [2.30] 
r e + l  

On the other hand, when B lies in either of the ranges ~ > B > 1 or -o=, < B < I, we 
define the symbol r e as 

[B + 111/2 
re = IB -~ -~ ]  ( IBI-> 1). [2.31] 

Equivalently, 

2 
B = r e +  1 

re 2 - 1 (IBI > 1). [2.32] 

The question of which of the two ranges, IBI < 1 or IBI >- 1, B lies in, proves crucial in 
determining the rotational motion of a neutrally buoyant axisymmetric particle suspended 
in a simple shearing flow (in the absence of rotary Brownian motion) (Bretherton 1962, 
Brenner 1972c). 

Another derived scalar of importance in the rheological theory is the rotary Brownian 
diffusion coefficient D, for rotation of the axisymmetric particle about a transverse axis. 
This is given by the Stokes-Einstein equation (Brenner 1967) as 

Dr = kT/l~o'l(_t - kT/6VrlZo 'K 1, [2.33] 

where k is Boltzmann's constant and T the absolute temperature. This rotary diffusivity 
may therefore be calculated from the material constant "K~. 

* The physical significance of r,. resides in the fact that for a spheroidal particle this parameter is equal to the 
particle axis ratio rp of the spheroid. (See [3.14].) 
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Finally, we define the derived tensor 

Q°jkl = Qijk, -- ½No,,Bmu. [2.341 

For a body of revolution it therefore follows from [2.24], [2.22? and [2.271 that 

Qi°jkl = (6ik6jt + ~it3ik)Q1 + (3ijeket + 3kteiej -- 3eiejeke~)Q2 

+ (fijkeiel + 3ilejek + 3ikeiel + 3jleiek -- 4eiejeket)Qo3, I2.357 

with 

0.°3 ~-- Q3 -- ½ BN  [2.36] 

a derived material constant. This tensor is of precisely the same form as the Q tensor in 
[2.24], with Qg appearing in place of Q3. 

Though not strictly required in the subsequent rheological theory of axisymmetric 
bodies, the material constants t/~, and r/~± arise in closely-related problems dealing with the 
translational diffusion of anisotropic axisymmetric Brownian particles in homogeneous 
shearing flows (Brenner & Condiff 1974). In particular, the translational diffusivities of the 
particle parallel and perpendicular, respectively, to the axis of the body may be expressed in 
terms of these (dimensional) particle material constants via the Stokes-Einstein relations 
(Brenner 1967) 

'D,, = k T/#o'l~, , 'D l = k T/#o 'K l .  [2.37a. b3 

Accordingly, it has been deemed worthwhile to tabulate these translational resistance 
coefficients in Section 3, as well as the material constant 'K~,, which is useful for calculating 
the rotary diffusivity 

rD H = k T /6Vp# f l~ ,  [2.38] 

of the particle about its symmetry axis. (The previous rotary coefficient Dr - 'Dl pertains 
to rotation about an axis perpendicular to this symmetry axis.) 

Inequal i t ies  satisfied by  the material  constants  

Considerations of the fundamentally positive nature of the energy dissipation arising 
from the presence of a suspended particle in an otherwise homogeneous shearing flow 
furnishes lower bounds for certain of the material constants. These are derived in Appendix 
G, the bounds being as follows: 

'/~, > 0, '/(1 > 0, [2.39a, b? 

rK~, > 0, rK± > 0, [2.40a, b? 

Q1 > 1/5, [2.41] 

Q1 - Q2 > 1/5, [2.42] 

Q~ + Q3 > 1/5, [2.43] 

Q, + O~ > 1/5. [2.44? 
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Each of these inequalities are satisfied by all of the bodies whose properties are tabulated in 
Section 3. 

3. MATERIAL CONSTANTS FOR VARIOUS AXISYMMETRIC BODIES 

In this section values will be given for the fundamental material constants '/~L' 7<±, "/~, 
'K j ,  N, QI, Q2 and Q3 for prolate and oblate spheroids, spheres, spherical dumbbells of 
various aspect ratios, and long slender bodies. From these we will obtain values for the 
derived material constants Q~, B and r e, additionally required in the general rheological 
theory. 

Suppose that the suspended particle is neutrally buoyant, i.e. it is force free and couple 
free. In this case it is found upon setting F i = L i = 0 in [2.9] and [2.10], and utilizing [2.19] 
for a centrally-symmetric body, that the translational and angular slip velocities are, 
respectively, 

Ui - v~' = 0, [3.1 ] 

~ i  - ¢oi = ~BukSik ,  [3.2] 

in which [2.26] has been utilized. According to the former relation the center O of the body 
translates with the velocity of the fluid in its proximity. With use of [2.27] the latter relation 
-specializes for axisymmetric particles to the form 

~ i  - -  t°i  = --  Beij~e~eksjk,  [3.3] 

wherein B appears as the only material constant. 
Substitution of [3.1] and [3.2] into [2.11], and subsequent use of [2.34] yields the following 

expression for the stresslet: 

A u = Qi~ktSkl ,  [3:4] 

in which Q°ju is given for an axisymmetric body by [2.36]. 

S p h e r o i d s  

The five fundamental material constants for an ellipsoid of revolution may be immediately 
obtained by comparison of [2.21]-[2.24] with equations [3.16], [3.19] and [3.20] of Brenner 
(1972a) (with QI, Q . ,  Qm of that paper replaced by Qx, Q2, Qa, respectively). Consequently, 

with rp = a / b  [3.5] 

the true or particle "axis ratio" of the spheroid (a = polar radius, b = equatorial radius), 
there is obtained 

2(r  + 1) 
'/<7. = 3(r~, + •±)' [3.6] 

N = 2(r~ - 1) 
5(r~, + ~1)' [3.7] 
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1 
Q1 = - - ,  [3.8] 

Q a = 1 5 ~ , ( 1 - ~ i ' / ' ~ [ 1  [3.9] 

Q3 50 , L r2~) + ~.L [cq_! 

4 (I - fl), [3.1 la] with eLL = z 1 
rp --  

2 
o~, - 2 l ( rEf l  - 1), 

rp  - -  

, rp _ r2 3r2fl), 
~± - (rpZ - 1)2( p + 2 - 

2 

~', = 4( rE _rP 1) 2 (aft + 2r 2 - 5), 

2 

Q ~  _ (rZp _rP | } 2  [(2r~ + 1)fl - 3 ] ,  

H','= 4(rp2 ~ 1) 2 [2rp z + 1 - ( 4 r ~  - 1)fl], 

cosh - ~ r p  

in which fl - -  r p ( r  2 _ 1)1,, 2 (r  v > 1), [3.11g] 

f l  = COS - I rp 
rp(1 - rae) 1/2 (rp < 1). 

[3.1o] 

[3.11b] 

[3.1 lct 

[3.1 l d] 

[3.1 le] 

[3.11f] 

[3.11hi 

The values rp > 1 and rp < 1 refer to prolate  and oblate spheroids, respectively. 

Use of [2.28b] in conjunct ion with [3.6] and [3.7] yields 

2 1 
B = rp - [3.12] 

Z + l  r p  

Since the particle axis rat io r r necessarily lies in the range 0 < rp < oc (being zero for a flat 
circular disk and approaching  infinity for a long needlelike object), it follows that  B lies 
in the range - 1 < B < 1, whereupon 

Inl < 1 [3.13] 

for a spheroid. Hence, from [2.29] it follows that 

r e = rp, [3.14] 



RHEOLOGY OF A DILUTE SUSPENSION OF AXISYMMETRIC RROWNIAN PARTICLES -31 I 

whence the equivalent and true axis ratios coincide for a spheroid. 
Finally, we obtain from [2.36] that 

= + 1 , [ 3 . 1 5 ]  

wherein the identity ~.  = ~ ( ~  - 1)- 1t~± - Z, ) has been employed. 
The volume of a spheroid is 

Vp = [4n/3)ab 2. [3.16] 

In addition to these values, for the sake of completeness we note that (Brenner 1967) 

2 
'K~, = 3~± [3.17] 

16rm 
' = r~(ZB + 0~,)' [ 3 . 1 8 ]  

16ha 
- [ 3 . 1 9 ]  'K± 2r2/? + a± 

Long thin prolate spheroids. In the limiting case where rp >> 1, the material constants 
previously given for the (prolate) spheroid asymptotically approach the following values: 

2 

'K± = rp [3.20a] 
3(ln 2rp - 0.5) 

2 

N = rp [3.20b] 
5(In 2rp - 0.5) 

2 6 In 2rp 
Q, = ~ - 5----~p 2 , [3.20c] 

2 
Q2 = '~ + - ,  [3.20d] 

15(In 2rp - 1.5) 5 

Q3= 
10fin 2r, - 0.5) [3.20e] 

2 
B = 1 - ~ ,  [3.20f] 

r~ 

Qg 6 In 2rp 
= 5r~ " [3.20g3 

,/~, 2 2 In 2rp 
- 3 3r~ ' [3.20h] 

4ha [3.20i] 
'/~' = in 2rp - 0.5' 

and 

and 

J.M.F., VoL I, No. 2 B 
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81ta 
'K = . [3.20j] 

In 2rp + 0.5 

Spheres .  In the special case of a spherical particle (radius = c), we have that a = b = c. 
whence 

The ~ integrals reduce to 

~, = ~ ±  =2 /3 .  

r e = r,. = I. [3.21] 

¢ 
~i = ~ l  = 2/5,  ~' = ~ = 4./15. [3.22a, b,c] 

whereupon the preceding relations adopt the forms 

rK l = 1, N = 0 ,  Q1 = 1/2, 

and 

in addition to 

8 = 0 ,  Q.~ = 0. 

rK~, = 1, 'K,  = 'I~I = 67tc. 

L o n g  s lender  a x i s y m m e t r i c  bodies  

Q2 = Q3 = 0, [3,23] 

[~ 94 ~ - - , 6  j 

[3.25] 

Consider an axisymmetric body (possessing fore aft symmetry) of length 2a and cross- 
sectional radius b at its midpoint. Particular examples of such bodies are prolate spheroids, 
symmetrical double cones, and circular cylinders of finite length, each of which is depicted 
in figure 1. Denote by 

rp = a/b  [3.26] 

2 a  - - J  
I 

(a) Prolate spheroid 

2b 
! 

2b 

(b) Symmetrical double cone 

3__ 
(c) Circular cylinder 

Figure 1. Slender bodies possessing fore- aft symmetry. 
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the particle axis ratio for the body. A slender body is then defined as one for which 

rp >> 1. [3.27] 

Let the parameter t be the distance measured from the midpoint of the body along its 
symmetry axis, and rendered dimensionless with the length a. Thus, t lies in the range 

- ! < t < 1, where t = + I corresponds to the endpoints of the particle. Define a dimen- 
sionless contour parameter a = a(t) such that ba is the cross-sectional radius the particle 
at the position t (t < 1) along its axis. The fore-aft symmetry property of the body is then 
represented by the fact that tr(t) = a ( -  t). Moreover, by definition, trt0) = 1. As examples 
we have that: 
(I) for a spheroid, 

a = (1 - tz)l/2; [3.28] 

(II) for a symmetrical double cone, 

[III) for a circular cylinder, 

t r = ~ ' l - t  f o r l > t > O ,  [3.29] 
(1 + t f o r O >  t > - 1 ;  

a = 1 for all t. [3.30] 

In the results to be cited, particles fall into two general categories--"sharp-ended" or 
"pointed" bodies and "blunt-ended" bodies. Sharp-ended bodies are those for which: 

(i) a(t) is a continuous function of t in the interval - 1 _< t _< 1, [3.31a] 

and 

(ii) a ( - 1 )  = a ( + l )  = O. [3.31b] 

Spheroids and double cones are examples of such bodies, as are spindles too. Blunt-ended 
bodies are those for which: 

(iii) a(t) is piecewise continuous in the interval - 1 _< t _< l, [3.32a] 

and 

(iv) a(t) possesses, at most, a finite number of discontinuities in the 
interval - 1  _< t _< I. [3.32b] 

Circular cylinders are examples of such bodies. 

As shown in Appendix B, the following asymptotic formulas, valid for rp >> l, apply to 
both classes of bodies: 

QI = 2/5, [3.33] 

Q2 = 4rg [3.34] 
45A(in 2r~ + K) 

Q~ = 0, [3.35] 
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The  quantit ies 

and 

rK~ = 2/3, 

4rta 

In 2r v + Co" 

8rta 

'K l  = l n 2 r p +  Co + 1 

[3.361 

E3.37J 

[3.38] 

K = - ~ + ~ ,  -1 t21n 

A = 0 .2 dt, 
- 1  

dt, [3.39! 

[3.40~ 

1 1 l n [ ! - z 2 t  
Co = - }  + ~ , 1 a2 J dt [3.411 

are numerical  constants for a body of given shape. The constant  A also arises in the expres- 
sion 

Vp = nabZA [3.42] 

for the volume of the slender body. 

General  formulas for the remaining material  constants  differ, according as the body is 
sharp- or blunt-ended. These are tabulated below for each of the two separate cases. 

Sharp-ended bodies. 

I [14/3)r  + I<2 14/3)K,r  +/%-1 [3.43] 

= 1 ~(4/'3)," x - K,, + (4/3)K4r~nn~) 5- K3J .  [3.441 
N 5K2E In rp 

r ( < )  - = p  1 + - [3.45i 
]'p 

B = 1 - 1 - • [3.46? 

The quantities 

f 
l 

K 2 - A = ~r z dt, [3.47! 
- 1  

= - tZln dt ~ - ( K  + In 2 + 1), [3.483 K4 - l n 2 -  4 - 1  



RHEOLOGY OF A DILUTE SUSPENSION OF AXISYMbIETRIC BROWNIAN PARTICLES 215 

P = ITKZ/  ' q = K ,  - [3.49a,  b]  

are numerical constants for a body of given shape, as is the constant K3 too. The latter is 
given by the expression 

K 3 = - ( 1  + In 2 + In e) 0 .2 dt + a 2 In 0. dt + t~(t) dr, [3.50a] 
1 - 1  1 

in which* 

f r  [~T ] l f ;  1 [~_~ ] 1 '-~ 1 0.Z(T) d T + ~  T -  t 0.2(T) dT [3.50b] 
~ ( t )=~  = - i t  - T  =,+~ 

Here, 0 < e << 1 is an arbitrary (small) positive parameter. The value of K3 may be shown 
to be independent of e. 

Blunt-ended bodies. 

: K,) 3L 1 'K± 9K2[_ln rp~ + ~ + ~ ' r3.51] 

4 [- rJ/____ ~Ka) 3h i  

= [ 8 h i m  1 [3.53] 
r e ~fL] (In rp 1/2' 

B = 1 3L In re  [3.54] 

in which L is a numerical constant of O(1), which depends critically upon the precise shape 
of the blunt ends of the body. As yet, this constant has not been calculated theoretically 
for any bodies. However, from a series of experimental measurements (Anczurowski & 
Mason 1968) of the equivalent axis ratio re as a function of the particle axis ratio r e for a 
series of circular cylinders of various aspect ratios (satisfying [3.27]), it has been determined 
(Cox 1971) via [3.53] that 

L ~ 5.45 [3.55] 

for a circular cylinder of finite length. 

From the fundamental material constants already tabulated, one can calculate the value 
of the derived material constant Q3 by Use of [2.36] (as well as z from [2.25]). Calculated 
values of the various numerical constants Ci and K~ for the threebodies displayed in figure 1 
are tabulated in table 1. By way of confirmation of the general theory, it may be seen that 

* For example, for a spheroid, a2(T) -- 1 - T 2, we obtain upon integration, 

~(t) = 2tlne + 2t - tin(1 - t2). 
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Table I. Numerical constants for various slender bodies. 

Body Sharp-ended bodies 
shape 

Numerical Prolate 
constant spheroid 

K 2 or A 4;3 
- K  32 

- C .  I 2 

- K.~ (2/3)(2 In 2 - 1) 
- K 4 In 2 - ( 1 / 2 )  

p 1 
- q  0 

Blunt-ended body 

Symmetrical Finite 
double circular 
cone cylinder 

2:3 2 
1 - tn  2 ( 1 7 / 6 )  - In  2 

- [ I n  2 - ( 1 : 2 J 3  (3 ,"2)  - In 2 

1 - ( 2 / 3 1 1 n 2  

21n2 1 - In2 

(3/4)(2 In 2 1) 

with use of the coefficients presented in table 1 for the prolate spheroid, all of the asymptotic 
values tabulated in [3.20J for the long thin prolate spheroid are reproduced by the present 
theory.* 

Dumbbe l l s  

As in figure 2, consider a dumbbell composed of equal spheres of radii c, joined by a thin 
rigid rod of negligible hydrodynamic resistance, with center-to-center spacing 21 between 
spheres. Define the particle axis ratio as 

rp = l/c. [3.56] 

The case where the spheres touch (tangent-sphere dumbbell} corresponds to the value rp = 1. 
For the general case where rp may lie anywhere in the range 1 _< rp < 3c, Wakiya (1971) 
furnishes an analysis of the motion of such a dumbbell when suspended in a simple shearing 

\ 

,-~t ....... 

Figure 2. Spherical dumbbell. 

* In making the comparison, note that [3.20aJ for the spheroid may be expanded into the form 

'K• --~-~ FI 1 n 2 - 0 . 5  ( 1  }2j 1[(4/'3)r~ (4 /3) ( ,n2-O.5) r~ l  
= + o iarp - aL ~ ~7"~7~ ~ /" 3 In r~  In r e 

which agrees asymptotically with [3.43] upon utilizing the value K4 = - ( In  2 - 0.5) for the spheroid. Similar 
agreement obtains for the material constant N 
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flow. Bipolar and tangent-sphere coordinate systems are employed to solve the appropriate 
low Reynolds number flow problem (cf. [2.6]-[2.8]) for this special flow.* As discussed in 
Appendix C, it is possible to extract from Wakiya's analysis the material constants for a 
dumbbell. This leads to the following values for the five fundamental rheological material 
constants: 

'K± = 2(a 2 + b2), [3.57] 

N = 6(a2 - b2), [3.58] 

QI = ~e2, [3.59] 

Q2 ~ l ~(e2 - eo), [3.60] 

Q ~  = t 5(et - e2), [3.61] 

as well as the following values for the derived material constants: 

r e = a/b, [3.62] 

122 - -  b 2 
B - a2 + b--------- ~ [3.63] 

(cf. [2.30]). Here, a 2, b 2, eo, et and e 2 are dimensionless numerical constants (Wakiya 1971), 
tabulated as a function of rp in table 2.t In turn, these lead to the values of the material 

Table 2. Wakiya's  dumbbell  parameters. 

fl* r p  a z b 2 e 0 e I e 2 

0 1 0.74523 0.18978 4,7760 2.8636 2.3824 
0.2 1.020 0.76423 0.19066 4.87 2.886 2.39 
0.5 1.1276 0.78073 0.19514 5.405 3.0022 2.428 
1.0 1.5431 1.3586 0.20942 7.745 3.3478 2.483 
1.5 2.3524 2.6699 0.22521 13.651 3.6798 2.498 
2.0 3.7622 6.1142 0.23576 28.399 3.8659 2.500 
2.5 6.1323 15.251 0.24175 66.402 3.9478 2.500 
3 10.0677 39.718 0.24513 166.559 3.9804 2.500 

7: ~c (3/8)r~ I/4 (3/2)r~ 4 5/2 

* The bipolar-coordinate parameter fl is defined as/~ = cosh -  ~ rp. 

* Note that Wakiya's  analysis exactly takes account of the hydrodynamic interactions among  the two spheres 
comprising the dumbbell. This is in contrast to previous approximate analyses of the dumbbell,  where the spheres 
were assumed to be so far apart  [i.e. rp >> I) that hydrodynamic interactions among  the spheres were regarded as 
wholly negligible (Bird et  al. 1971, Brenner & Condiff 1974). or were only taken into account to terms of lowest 
order in the small parameter r ;  t (Bird & Warner  1971, Stewart & S~rensen 1972). 

t T h o u g b  not listed in the original tabulation of Wakiya (1971), the a 2 and b z values were kindly supplied to me 
by Professor Wakiya, who, at my request, also furnished the more extensive and more accurate results cited in 
table 2. 

The limiting values of these parameters as rj, --, ~ were also furnished to me by Professor Wakiya, who obtained 
them independently by both a "method of reflections" expansion and an expansion of the exact, bipolar coordinate 
solution. 
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constants tab-_iated in table 3.* The values of 03 arid T may be obtained from these via [2.36] 
and [2.25], respectively, 

Numerical values of the auxiliary material constants '~, and t~j. as a function of rp may 
be obtained from the bipolar-coordinate calculations of Goldman et ai. (1966) for the 
translational motion of two identical spheres in a quiescent fluid, moving parallel and 
perpendicular, respectively, to their line of centers, when the spheres are each prevented 
from rotating.t Values of ~/~, as a function of rp may be obtained from the tabulation of 
Kunesh (1971), derived from the solution of Stokes equations for the equal rotation of two 
identical spheres about an axis coinciding with their line of centers.~ A partial tabulation 
of these results is presented in table 4. 

Table 4. Auxiliary material constants for a dumbbell. 

rp "K~ * ' ~ , / 1 2 n c *  '/~±/! 2~c'¢ 

0.0 1.0 0.90154 0.64514 0.72469 
0.2 1.0201 0.90562 0,6474 0.7281 
0.5 1.1276 0.92504 0.65963 0.74565 
1.0 1.5431 0.96752 0.70245 0.79957 
1.5 2.3524 0.99050 0.76778 0.86015 
2.0 3.7622 0.99766 0.83620 0.90859 
2.5 6.1"323 ~' 0.99946 0.89159 0.94216 
3.0 10.0677 0.99988 0.93079 0.96404 

oo 1.0 1.0 1.0 

* These values were computed from equation [C.21] in Appendix 
C by Professor Wakiya. They agree with the value tabulated by 
Kunesh (1971), obtained from the table cited in the last footnote 
at the bottom of this page. 

t See the second footnote at the bottom of this page. 

* Independent confirmation of several of these results for the limiting case rp = 1. where the spheres touch, is 
provided by the work of Majumdar & O'Neill (1972). In our notation these authors give 'K± =, 1.8704 and 

= 0.5556 (i.~ N .- 0.6667; cf. [2.25]), in close agreement with the values tabulated in table 3. From these values 
we may also derive B = 0.59410 and re - 1.9817 (of. [2.28a] and [2.29]). also in close agreement with the cor- 
responding results cited in table 3. 

t In the notation of Goldman et al. (1966), the expressions for these material constants are given by 

tK, = 12nctF,,*l, ' ~  -- 12nclE*[. 

Numerical values of IF,*I are presented in tables 8 and 8A of these authors. Likewise, I~*1 is tabulated in tables 1 
and 2 of these authors. The limiting cases where the spheres touch (rp -- 1) are treated separately by Majumdar & 
O'Neill (1972), who obtain values of ~ / 1 2 ~ c  == 0.6451 and ' ~ / 1 2 ~ c  = 0.7243, in good agreement with the 
limiting results of Goldman et al. (1966), cited in table 4 for rp = 1. 

By symmetry, this solution is formally identical to that for the symmetrical rotation of a single sphere in 
proximity to a free so"face placed midway between the two spheres, for which numerical calculations are provided 
by Kunesh (1971), bared on the formula (Cox & Brenner 1967) 

"/~, = sinh~fl ~, ( - 1 )  "+I cosech3mfl, 
m=l 

with p ~ cosh-i  I/c. T h e  limiting case where the spheres touch is solved separately by Cox & Brenner (1967), 
Majumdar (1967), and Majumdar & O'Neill (1972). 
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In utilizing these results it should be noted that the volume of the dumbbell is 

V~ = 8nc~ 3. [3.64t 

For the case of touching spheres. Nit & Acrivos (1973: see footnote on page 206) give an 
independent tabulation of the material constants for the dumbbell. Relationships between 

the constants appearing in their material tensors and ours are 

'I~, = (al + a2)/p, '!~± = al/'l~, rK,, = (hi + h2)/16rtlmi ~. 

"K l = bl /16rrp@, N = 3 r l , 4 0 ~ a i  ~. r = rl/167tpai ~, B = 2r l /h  v 

Ql = c 2 , 1 0 ] ~ , ,  Q2 - -(el + 2c3)'151/],, Q3 = c3 IOI;,- 

in which # is the solvent viscosity, a r is the radius of each of the identical spheres comprising 

the dumbbell, and V,, = 8rrai~3 is the volume of the dumbbell. Use of the tabulated 

numerical constants a~, a 2, h I , h,_. c~, c2, c3 and rl furnished in their table 2 yields results 
which agree with ours to at least three significant figures. However, the expressions given 

for the material tensors Ri.i~ and R'~iik in their equation IA.21 are in error. In their notation, 
the correct expressions for these tensors should be 

R'iil, = -- rl(~,:i i lptPk + Cik tp lp i l .  

Riga = r l ( c i l d P l P i  + t; jktPlPi) ,  

where r~ is the constant defined in their equation [A.3! and tabulated in their table 2. These 

tensors differ from those reported by Nir & Acrivos (1973) by a minus sign. 

Dumbbel l  composed o! "'non-interacting'" spheres. When r e >> I. the two spheres com- 

prising the dumbbell are so far apart  that hydrodynamic interactions among them may be 
neglected in the first approximation.  II then becomes possible (see Section 11 of Brenner 

& Condiff 1974, as well as Appendix D of the present paper) to perform an independent 

calculation of the material constants, using known results for isolated spheres. In this 

manner  we obtain, for the "'non-interacting'" dumbbell, 

~K ± ~ ' = 1. ,'4)r~, [3.65a] 

N = (9.20)r~, i3.65b; 

Q~ = O(lJ, !3.65c] 

02 = - (3/10)r/~, I3.65d? 

Q3 = 19/40lrr~, [3.65et 

from which may be derived the following values of the secondary constants: 

B = 1, r,,'r~ = O(1), Q~ = O(1). I3.65f, g,h~ 

These accord with Wakiya's  "method of reflection" values, tabulated in table 3. However. 
the more accurate values of the constants, Q~ = 1/2, r./rp = (3/2) ~z and Q] = 3/10, given 
in table 3, and specified in [3.65] merely by gauge symbols, cannot be calculated by con- 
sidering the behavior of isolated spheres. Rather, they can only be calculated in numerical 
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value by taking account of first-order interactions between the spheres, as was done by 
Wakiya via the "method of reflections". 

In addition to the above values, we also find for the "non-interacting" dumbbell that 

'/~ = 1, '/~, = 12nc, '/(± = 12nc. [3.66a. b, c] 

These derive, respectively, from Kirchhoff's law (Lamb 1932) for the rotation of an isolated 
sphere about an axis through its center, and from Stokes' law for the translation of an 
isolated sphere through a quiescent fluid. 

Substitution of [3.65c, d, e] into [2.24] yields* 

Qijkl = [6jkeiet + 6ilejek "4- i)ikejel 4- 3jleiek -- (4/3)(6ijekel  4- tSueiej)](1/2) Q + O(1), [3.67] 

in which 

Q = (9/20)rp 2. [3.68] 

Note that to terms of O(r~) the fourth order terms, eieieke t, in the general Qijk~ tensor in [2.24] 
have vanished. This makes the "non-interacting" dumbbell suspect as a reasonably general 
model of an axisymmetric body. Indeed [8.16b] (with h = 0), shows that a dilute suspension 
of such bodies fails to produce a primary normal stress difference. Such atypical behavior 
is not representative of that exhibited by axisymmetric particles in general. 

"First-order" dumbbell. Going beyond the asymptotic values for rp >> 1 tabulated in 
table 3, Wakiya (1972) has derived the following, more accurate, asymptotic values of the 
coefficients a z and eo : 

U2 _~_ _3. 2 155 4- sr~ + -~4rp + ~-~ - 4~996r~ 1 O(r~ 2), [3.69a] 

a 2 s~, -  1 O(rf  2). [3.69b] e o ~r~; + 9rp + ~ + ~--- - -  128'p 

In conjunction with the values (cf. table 3) 

b 2 = ¼ + O(r f  1), [3.70a] 

el = 4 + O ( r p 2 ) ,  [3.70b] 

e2 = ~2 4- O(rp4},  [3.70c] 

this permits us to obtain analytical expressions for the fundamental material constants to 
terms of at least O(1) in the aspect ratio rp. 

For purposes of comparing these results with certain related results of Bird et al. (1971) 
in Section 8, we will, however, compute the "first-order" material constants only to O(rp). 
Following the notation of Bird et al., define the small dimensionless "interaction" parameter, 

3 r I 3 c  h = ~  p- = ~ < <  1. [3.71] 

* The Qou tensor given here is not the same as a comparable tensor given in equation [9.27] of Brenner (1972a). 
The apparent  'discrepancy is ~t isfactor i ly  resolved in Appendix D. 
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Equat ions  [3.69] may then be written correctly to terms of  order  ~3 as 

a2 3r~ 
- + 0 ( I ) ,  

8~I - h) [3.72al 

3rp 
e o -  2(t - 2h) + O(1), [3.72b] 

in which it has been noted that r2(1 + 

the order  of the approximat ion.  

Equat ions  [3.70] and [3.721 lead to the 

nh)  + O(1) = r2(1 - nh) -x + O(1) (n = 1,21 to 

following values of  the material constants:  

rK __ 3r~ 
l 4(1 - h) + 0(I) ,  [3.73a3 

N 9r~ 
- + 0 ( 1 ) ,  

20(I - h) 

Q I = ½ + O ( h %  

[3.73b3 

[3.73c] 

2 = 
1 0 ( 1  - 2 h )  

+ O(1), E3.73d] 

3 
Q~ = ~ + O(h2), [3.73e] 

i 4 
and* ~ = 1 + 3r--~ [1 - h + O(h2)], E3.73f] 

r~/rp = (3/2) 1'2 + O(h), [3.73g; 

9rX 
Q 3  - -  40(1 - h) + O(1). [3.73h] 

The parameter  to which the gauge symbols refer is h. 

In addit ion to these first-order interaction values, it also follows that (Brenner 1964a) 

1 
- + O(h8), [3.74] rgll l --[- ~v4h 3 

as well as (Happel & Brenner 1965) 

12gC 
' L ,  = 1 + 2---h + O(h3}" [3.753 

* A considerably more accurate value of r,., derived from [3.62]. [3.69a] and [3.7Oa]. is 

- = 1 + . + - + Olrp 31 • r, S '" i-.S.~ r ' ~  

With use of [2.30~ this gives rise to a more accurate expression for B than that tabulated in [3.73f]. 
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127tc 
and 'Kj. = I +----h + O(h3)" [3.76] 

Circular  disks  

The material constants for an infinitesimally thin circular disk of radius b may be obtained 
from the general results cited in [3.5]-[3.19] for an oblate spheroid, by letting the polar 
radius a tend to zero. Since the volume Vp of such a disk is zero, results for this case must 
necessarily be presented in a slightly different form than for prior bodies. In connection with 
their ultimate use in the basic theological constitutive equation [4.27], and equations derived 
therefrom, the appropriate forms for the various material constants are as follows: 

'£x = (32/3)b a, [3.77a] 

~bN = - n( 16/15)b 3, [3.77b] 

c~Q~ = n(32/45)b 3, [3.77c] 

c~Q2 = n(16/45)b a, [3.77d] 

c~Q3 = - n(8/45)b 3, [3.77e] 

in which n is the number of disks per unit volume. (This number density is related generally 
to the volume Vp of a particle and to the volume fraction ~ of suspended particles via the 
relation n = ~/Vp ,  in which ~ and Vp are both zero for circular disks.) Derived material 
c o n s t a n t s  a r e  

Auxiliary material constants are 

B = - 1, [3.771"] 

rp = 0, [3.77g] 

r e = 0, [3.77h] 

i = (16/3)b a, [3.77i] 

qbQ°3 = - n(a2/45)b a. [3.77j] 

",~, = (32/3)b 3, [3.77k] 

~ .  = 16b, [3.77|] 

tl~± = (32/3)b. [3.77m] 

4. RESUM~ OF DILUTE SUSPENSION RHEOLOGY THEORY 

Consider a dilute, spatially uniform suspension of identical, rigid, force- and couple-free 
panicles (possessing fore-aft symmetry) suspended in a linear homogeneous shear flow. 
Since the assumption of diluteness implies that the particles are far apart on the average, 
hydrodynamic interactions among them may be neglected in the first approximation. 
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The local velocity field in the neighborhood of each particle corresponds to the "'un- 
disturbed" flow [2.5]. Due to the collective effect of the disturbance created by all the par- 
ticles in the suspension, this velocity does not, however, correspond to the mean local 
velocity of the suspension itself, which quantity will be denoted by u. The mean velocity 
gradient G in the suspension is then 

G = Vu, [4.1~ 

which can be decomposed into its symmetric and antisymmetric parts to give 

S = ½(G + G*t = S*, [4.2! 

and A = -½(G - G*) = - A*, [4.3] 

as the mean rate of strain and mean vorticity dyadics, respectively, in the suspension. In 
general, these are related to the corresponding undisturbed dyadics, s and 2. defined in [2.2! 
to [2.3], by the relations {Brenner & Condiff 1974) 

S = s  + 0149), A = 2 + 0(49), i4.4a, bi 

in which 49 is the volume fraction of suspended particles. 
To terms of the first order in 49, the mean deviatoric stress T in the suspension may be 

calculated from the relation (Brenner & Condiff 1974) 

5 AOl T = 21~oG(S + ~49( ) + 0(49z), 

with 

=- S / G ,  , i  = A/G,  

[4.5] 

[4.6a. bt 

and ,~ = A/G,  in which G is some characteristic shear rate. The mean value denoted by the 
angular brackets represents an orientational average, defined generally by the expression 

(q t )"  = ~ ~(ejf°(e) d2e [4.7 i 
J 

for any function ~ -- ~(e) dependent upon the orientation e of the axisymmetric particle. 
Particle orientation is represented here by the body-fixed unit vector e lying along the 
symmetry axis of the axisymmetric body. Here, f o  =_ f°(e) denotes the orientational distri- 
bution function, and d:e represents a scalar element of surface area drawn on the unit 
sphere. Integration is over all orientations. This probability density is normalized to unity: 

~ f "  d2e = 1. [4.81 

Equation [3.4] for the stresslet A applies only when rotary Brownian motion is absent. 
Inclusion of the rotary Brownian movement modifies it to the following form {Brenner & 
Condiff 1974): 

Air = Qi~ktSkt -- Ni~k(f~ak r + 09~,), [4.9q, 
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provided that the suspended particles are each force free. Here, for axisymmetric bodies 
(Brenner & Condiff 1974), 

f l  n" = - D e  x V e f  ° [4.10] 

is the angular velocity induced by the Brownian motion, with D, the rotary diffusion 
coefficient for rotation of the axisymmetric body about a transverse axis, and Ve the 
orientational gradient operator. It will be supposed that the suspended particles are couple 
free, so that the angular velocity to e induced by the external couples is identically zero. 

The orientational distribution function satisfies the conservation relation (Brenner & 
Condiff 1974) 

~fo 
c~--/- + Ve'J° = 0, [4.11] 

where t is the time. In this expression the rotary flux vector jo = jO(e ) is given by the consti- 
tutive relation 

jo = . f o ( ~  + flBr) X e, [4.12] 

with f l  the hydrodynamic angular velocity, given by [3.3] for couple-free axisymmetric 
particles. In the steady state, f o  therefore satisfies the second-order partial differential 
equation (Brenner & Condiff 1974), 

V 2 f  ° = Dr- Ires [(~,s e + Bs. e - Bs, eee)f°], [4.13] 

with V 2 =- V~. V~ the angular portion of the Laplace operator on the unit sphere. Consider 
the analogous function f, in which the undisturbed quantities ~-ij and si~ appearing in the 
above equation are replaced by the mean values Aij and Sij, respectively, i.e. f satisfies 

V2f = 2V e . [ (B-1A.e  + S . e  = S.eee)f ] ,  [4.14] 

subject to the normalization condition (cf. [4.8]) 

Here, 

wherein 

ff dZe = 1. [4.15] 

2 = BP, [4.16] 

p = ¢;/D, [4.17] 

is the rotary P6clet number; 2 therefore represents a weighted P6clet number. In view of 
[4.4] it follows that 

f = f o  + O(~). [4.18] 

Equation [4.10] may now be written as 

flB' = f l  'n' + O(~),  [4.19] 
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wherein 

f~,nr = - D r e  x V, , f .  [4.20! 

With use of [4.4a] and [4.19], equation [4.91 may now be expressed in the form 

"4u = ,4~ + 0(4)) ,  [4.21] 

wherein 
A~j  o - = Quk~Sk~ -- G- lNukf l~ ,Br .  E4.22] 

Substitution of [4.21] and [4.18] into [4.5] therefore gives 

T = 2#,G(S + ~4)(,i,')i + O(4)2}. [4.23! 

The angular brackets appearing herein are defined generally as (cf. [4.77t, 

/ 

(q/) = <~;,qt(e)/(e) d2e, [4.241 

with f the distribution function satisfying [4.14] and [4.15]. The material tensors Q~)k~ and 
Nijk are given generally for axisymmetric particles by [2.357 and [2.22], while the Brownian 
angular velocity ~Br is given for such bodies by [4.20]. Use of the expression [4.22] for ,~' 
therefore enables us to determine that 

(,~') = 2QIS + Q21S:(ee)  + 2Q'~(S- (,,ee) + ( e e ) . S )  

- (3Q2 + 4Q~)g: (eeee)  + 2 N B 2 - l ( 3 ( e e )  - !i, I4.251 

with I the idemfactor. The term involving the fourth orientational moment may be 
expressed in terms of second moments via the general theorem (Brenner & Condiff 1974) 

S : ( e e e e )  = l[(g + B - I ~ j .  ( ee )  + ( e e ) . ( S  - B-1~)] _ ) , - l (3 (ee )  _ I), [4.26~ 

derived from [4.14]. 
In this manner we may obtain an alternate expression for the mean dimensionless 

stresslet (A ' )  involving only the second orientational moment ( ee ) .  Substitution of the 
resulting expression into [4.237 then yields, correctly to terms of the first order in 4~, 

T - 2~°Gg 10Q1S 1~ - - - TQ2(S.  ( ee )  + ( e e ) .  g - 21g: (ee) l  
4) I~o G 

-~-B-~13Q2 + 4Q~)(A • (ee) - (ee). ~) 

+5). ~(3Qz + 4Q3)(3(ee) - I). [4.27i 

The isotropic terms in this expression (i.e. the terms multiplied by I) could be suppressed 
since they are physically irrelevant for an incompressible suspension. They have been re- 
tained, however, at least temporarily, to render the deviatoric stress traceless, i.e. 

t r T  -~ I :T  = Tkk = 0, [4.28] 

which is the commonly used convention. That this expression is indeed traceless follows 
in general from [4.1], since both g and (,~) possess zero trace. (The latter is a consequence 

of the fact that A~ = 0 (Brenner 1972a).) 
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As follows from [4.24], the se¢oad ofientational moment is given by 

(ee)  = ~ eef(e) d2e. [4.29] 

Subject to the requirement that f be positive, continuous, single-valued, and satisfy the 
normalization condition [4.15], the solution of [4.14] possesses a unique solution for a 
prescribed mean velocity gradient G in the suspension, the solution being of the functional 
formf = f(e;  ~, ,~,; B, 2). In consequence of this, the second orientational moment possesses 
the general functional form 

(ee)  = function (S, A; B, 2). [4.30] 

Equation [4.27] furnishes the general theological equation of the suspension of axisym- 
metric particles to O(~b). In consequence of [4.30], this equation will generally be highly 
nonlinear. In general, apart from the parameters/~o and 4~, the material constants appearing 
in this rheological constitutive equation are completely determined by the five fundamental 
particle constants, 'K±, N, Q1, Q2 and Q3 (and the auxiliary constants B, Q~ and D, derivable 
from these). Since these constants depend only on the shape of the suspended particles, but 
not their size, the same is true of the deviatoric stress. Values of these constants for a wide 
variety of axisymmetric bodies are tabulated in Section 3. 

It is demonstrated in Appendix G that the time rate of mechanical energy dissipation D 
per unit volume of the flowing suspension is given by the expression 

and possesses the property that 

D = T:S,  [4.31] 

O > 0, [4.32] 

in which the equality sign holds only when S = 0. Here, T is the mean deviatoric stress, 
given by [4.27]. 

It is sometimes convenient to define a viscosity function rt in terms of the energy dissipation 
by means of the relation 

T:S 
r /=  2S: S [4.33] 

even when the suspension is non-Newtonian. With use of [G.49] this yields the following 
lower bound on the viscosity of a suspension of rigid axisymmetric particles: 

q >/~o(1 + ~) > O. [4.34] 

This generalizes an earlier result (Brenner 1958) which was only shown to apply in the 
absence of Brownian motion. Equation [4.34] may be expressed alternatively in terms of the 
intrinsic viscosity (cf. [5.15]) as 

[if] > I. [4.35] 

J.M.F., Vol. I, No. 2 C 
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In the case where the suspended particles are spherical in shape (cf. [3,23]), [4.27] correctly 
reduces to Einstein's result, 

T = 2r/S, [4.36] 

with q = #o(1 + -~b), [4.37] 

irrespective of the type of shear flow. The rotary Brownian motion is obviously without 
effect, as was to be expected. 

5. A X I S Y M M E T R I C  E X T E N S I O N A L  F L O W S  

Perhaps the simplest application of the preceding rheological theory is to the case of 
uniaxial flows (Trouton 1906), generated--at  least in principle--by the extension or com- 
pression of a cylindrical thread of fluid. With (xl, x2, x3) a system of Cartesian axis fixed 
in space, consider the incompressible flow field a in the suspension, 

U 1 = - ½ G x  1, u 2 = - ½ G x  2, u3 = G x  3, [5.1]  

arising from the application of a tensile or compressive force along the x 3 axis. The 
parameter G represents the fractional rate of elongation of the thread along the x3 axis. 
Thus, 

G > 0 for elongationat flows, [5.2a] 

G < 0 for contractile flows. [5.2b] 

From [4.1] to [4.3] and [4.6] it follows that 

g = ~(3i3i3 - 1t, [5.33 

and A = 0, [5.4] 

in which (il, i2, i3) are a right-handed system of unit vectors along ( x l ,  x 2 ,  x3). Equation 
[5.4] is a manifestation of the irrotational nature of the flow, 

The unit orientational vector e may be represented as a unit radial vector in a system of 
spherical-polar coordinates (r, 0, th): 

e = i I sin 0 cosq5 + i2 sin 0sin q5 + i3 cos 0. [5.5] 

Substitution of [5.3] and [5.4] into [4.14] furnishes the differential equation governing the 
orientational distribution function. Subject to the normalization condition [4.15], this 
equation possesses the solution (Brenner & Condiff 1974) 

f ( O )  -= K - t exp (~2 cos 2 0), [5.6! 

with K = K(2) the normalization constant 

K(¢) = 4n~-t  exp (~2)D(~) for 2 > 0, [5.7a] 

K ( ~ ) = 4 n  f o r 2 = 0 ,  
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K(~) = 2n3/2~ - ' e r f ~  for 2 < O ,  [5.7h] 

in which D(~) = exp ( -  ~2) f2  exp (z 2) dz [5.8] 

is Dawson's integral (Abramowitz & Stegun 1968; see also [HA1]), and 

erf~ = 2n -1/2 e x p ( - z 2 ) d z  [5.9] 

the error function. In these expressions, 

= 132/411/2. [5.10] 

The parameter 2 may be positive or negative, depending upon the algebraic signs of B 
and G. For example, in the case of spheroidal particles, [3.5] and [3.12] show that B is 
positive for prolate spheroids and negative for oblate spheroids. Algebraic signs for G are 
as indicated in [5.2]. Equations [4.29], [5.5] and [5.6] combine to yield (Brenner & Condiff 
1974) 

< e e >  = ½[I - iai  3 + (3i3i  3 - I ) F ( ~ ) ] ,  [5 .11]  

1 1 
in which F(O = 2~D(~----] 2~ 2 for 2 > 0, [5.12a] 

f(~) = ~ for 2 = 0, [5.12b] 

1 exp ( -  ~2) 
F(O = 2~ 2 nx/2~ erf~ for 2 < 0. [5.12c] 

Introduction of [5.3], [5.4] and [5.11] into [4.27] gives 

T - 2#oGS 

#oG 
= 512QI - 2a(F + 3!)Q2 + 32-*(F - ½)(3Q2 + 4Q3)]S [5.13] 

for the deviatoric stress. Equivalently, 

T = 2qS, [5.143 

where, if q is expressed in the terms of the intrinsic viscosity [q], defined generally as 

[q] = lira r/ - #o, [5.15] 
, - . o  4'#0 

then [q] is the quantity 

[T/] = ~[2Q1 - ~(F + ~)Q2 + 3,1.-'(F - ~)(3Q2 + 4Qa) ]. [5.16] 

Equation [5.14] shows that with respect to axisymmetric extensional or compressive 
flows, the suspension behaves like a Newtonian fluid possessing a shear-dependent (i e. 



2 3 0  H O W A R D  B R E N N E R  

G-dependentJ  viscosity coefficient ~7. In the case of spheroidal  particles [5.14~ ~5.16]. agree 
identically with prior  results (Brenner 1972a).* 

For  the limiting case where the Brownian  mot ion  is d o m i n a n k  it follows from either 

[5.12a] or [5.12c] that  F --, (1/3)[1 + (,;./5! + 0(22)] as 2 --* 0 + .  Hence, in this limit, the 

"zero ,shear"  intrinsic viscosity is 

[,7]0 = 5Q~ - Q2 + 2Q3,  ~5.17] 

in which the subscript  zero denotes  the limiting value as P --- G/D, ~ O. From [5.11]. in 

this limit ( e e )  --, I/3, cor responding  to a r a n d o m  distr ibut ion of orientat ions.  
In the opposi te  case of weak Brownian mot ion,  or equivalently infinite e longat ional  rate 

(IGt ---' 3c), 121 --* 3c. The  algebraic sign of 2 depends upon  those of B and G. As ). ---, + ~:. 
F ~  1 - ( 4 / 3 ) 2 - t  whence 

[,1]+ ~ = 5(QI - Q2). [5.18] 

On the other  hand, F ~ -(2./3t). ~ as ). ~ - z ,  whence 

[r/] , = 5Qt - ~O:.  [5.19] 

As discussed by Brenner (1972a), these two limits, in which rotary diffusion is effectively 

absent,  cor respond  to preferential  a l ignments  of the symmet ry  axes of the axisymmetr ic  
particles relative to the axis of tension or compress ion  of the uniaxial flow [5.1]. 

Figures 3a and 3b are Nots  of [r/] vs the dimensionless  "shear"  rate (2,/Dr for spheroidal  

particles of var ious aspect ratios rt,. For oblate  spheroids IO ~ rp < 1 t theological  behavior  

,ooo~, , , , , ,  I"""* I"""*' I ''''~''* ;~"~'"~ '"l,",! '"r '"  1 '"1,' 3 
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Figure 3a. Variation of intrinsic viscosity with clongation rate for prolate spheroids of ~arious axis 
ratios suspended in an axisymmetric uniaxial extensional flow. 

* In making the comparison, note that 2 as defined by Brenner (1972a) is only 34  of the value, t~ - BG D,. 
defined in the present paper. Note also that the corresponding expressions for ~/ t,~l, in Brenner 1972a) differ 
superficially in their appearance, since the theorem [4.267 was not employed to simplify the analysis of Brenner 
(1972a). However. the two forms can be shown to be identical. 
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Figure 3b. Variation of intrinsic viscosity with elongation rate for oblate spheroids of various axis 
ratios suspended in an axisymmetric uniaxial extensional flow. 

is of the shear-thickening type, in that [q] increases monotonically as G is varied from - oo 
to ~ .  The same behavior obtains for prolate spheroids whose axis ratios lie in the range 
1 < rp < 10.473 (Clarke 1973). However, for those prolate spheroids characterized by 
10.473 < rp < ~ ,  behavior is of the shear-thickening type only up until some value of the 
dimensional shear rate, whose value depends upon rp. Beyond this shear rate the behavior 
is of the shear-thinning type. 

For a "non-interacting" dumbbell (cf. [3.65]), [5.16] reduces to 

[ ~ ]  9 2 = -~r;,(F + ~), [5.20] 

where rp is the aspect ratio of the dumbbell, defined in [3.56], and 2 = G/D, in the present 
case, since B = l,The agreement of this result with that of Bird et al. (1971) for the particular 
case of extensional flows (G > 0) has already been pointed out (Brenner 1972a). 

The quantity q defined by [5.14] is identical to the viscosity function defined more generally 
by [4.33]. Thus, the general inequality, [q] > 1 (of. [4.35]), applies in the present circum- 
stances. In particular, with use of [2.41]-[2.43], [5.16] may be demonstrated to satisfy this 
inequality. 

6. PLANE E X T E N S I O N A L  F L O W S  

The two-dimensional flow field 

ul = - ½ G x l ,  //2 = IGX2,  U 3 = 0, [6.1] 

is the two-dimensional (biaxial) counterpart of the axisymmetric (uniaxial) extensional flow 
[5.1]. This irrotational planar flow can be experimentally realized at the center of a "four 
roller, apparatus (Taylor 1934, Giesekus 1962b, Chaffey et al. 1965). As before, G may be 
either positive or negative, as in [5.2]. Now, however, the question of the algebraic sign of G 
is trivial, since G changes sign under the transformation 1 ~ 2 and 2 --. 1. Hence, in contrast 
to the results of the prior section, the algebraic sign of G is here devoid of physical significance. 
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In present circumstances,  

and 
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S = ( 1 / 2 ) ( i ~ i  2 - i l i l ) ,  [6.21 

,~ = O. [6.3] 

The orientat ional  distr ibution function for this case is (Brenner & Condiff  1974) 

( ( 0 ,  c~) = K - ~ exp ( -¼2  sin z 0 cos 24~1, [6.4t 

with angles (0 ,  (a) defined as in [5.5]. Here, K - K(121) is the normal iza t ion constant  

K = exp ( -¼2  sin z 0 cos 24~} sin 0 dO de ,  [6.5] 

which yields on integration (Brenner & Condiff  1974) 

K(121) = 2~'2rt2I,,4@2 )I_ ~.4@21), [6.61 

with I~, the modified Bessel func t ion  of the first kind of order  v. 
It is readily shown by symmetry  arguments  that all "off-diagonal" terms in ( e e )  are 

identically zero in the present case, whence ( e e )  is necessarily of the form 

( e e )  = i l i l a  t + i 2 i 2 a  2 + i3i3a3, [6.71 

in which 

where, from [5.5], 

a 1 ~ ( e l e l )  = ( s i n  2 0 c o s  2 q~), 

a 2 ~ ( e 2 e 2 )  = (sin2 0 s i n  2 ~b3, 

a 3 --= ( e 3 e 3 )  = (COS 2 0 ) ,  

[6.8al 

[6.8bl 

[6.8c~ 

In terms of these, 

defined by the expressions 

g = - 2 ( a l  - a2) = - 2 ( s i n  2 0 cos 2~b), 

h = 2(a I + a2) - 2(s in  2 0).  

a l  = l ( g  _ h), 

a2 = / ( g  + h), 

a 3 = 1 - -  ½h. 

[6.10] 

[6.111 

[6.12a~ 

[6.12b] 

[6.12cl 

(e  I , e 2, e3)  = tsin 0 cos 4', sin 0 sin 4', cos 0). 

The coefficient a 3 is not  independent  of the other  two since it is a consequence of [6.8] that 

a3 = 1 - ( a l  + a2) .  [6.9] 

Calculat ion of the second orientat ional  moment  therefore requires evaluation of only al 

and a z . 
In place of al and a2 it is convenient  to introduce two other  parameters,  g(2) and h() . ) ,  
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From the definition of the bracket integral in [4.24], we find upon utilizing the expression 
for f in [6.4] that 

sin2 0 cos 2cb exp (-¼2 sin2 0 cos 2~b) sin 0 d0 d~b, [6.13] g = - ~  

and 

 r"r" h = ~ ,Io .3o sin2 0 exp ( -¼2 sin 2 0 cos 2~b) sin 0 dO d4~. [6.14] 

The first of these integrals may be evaluated by observing from [6.5] that the integral 
is merely -4dK/d2 .  Utilization of the expression for K in [6,6], and use of the relation 
2 = 121 sgn 2 (where sgn 2 = 1 for 2 > 0, and sgn2 = - 1 for 2 < 0), then gives 

l , ! 
g(2) = (sgn 2) l~/,(s121)l-~/,(s121) + I_ l/4(kl21)tl/,(kl21) 

I1/4(~121)I-1/4(~121) 
[6.15] 

in which I'o(x) = dl,,(x)/dx. These derivatives may be obtained from the recurrence relation 
I'o = ½(Io+~ + I~-0. Evaluation of h is discussed in Appendix E, the result ultimately 
obtained being 

h(2) = tl/,(~121)L 1/,(~t21) + I3/,,(-~121)I- 3/,(kl21) 
I1/4(~121)I'1/4(~121) 

[6.16] 

Tabulated values of these modified Bessel functions are available (Luke 1962). 
The g and h functions may be expanded for small 121 by means of the modified Bessel 

function expansion (McLachlan 1955) 

x° [ x 2 x'* ] 
lo(2x) = F(v + 1) 1 + ~ + 2!(o + 1)(0 + 2) + "'" (Ixl << 1), 

in conjunction with the following identities (McLachlan 1955) relating to the factorial 
function: 

This eventually gives 

and 

~ 2  

F(1 + z)F(1 - z) = sin nz' 

F(z) = (z - 1)(z - 2)F(z - 2), 

zF(z) = F(1 + z). 

g(2) = ~ 2  __t__ 3 
- 3a5o2 + 0(2 5) (121 << 1), [6.17a] 

h(2) = ~ + 3~-~s2 2 + 0(2'*) (121 << 1). [6.17b] 
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Expansions for large I)d may be obtained from the asymptot ic  expansion of the modified 
Bessel function (McLachlan  1955) 

I 4 21 O(,)1 l , , ( x )  - -  ( 2 ~ x ) 1 ,  s 1 8 x  + .~ _ ¢lxl >> 1), 

thereby obtaining 

g()3 = 2 s g n 2  - ~, + O (121 >> 1), [6.t8al 

h(X) = 2 - ~ + 0 li;.I >> Ii. E6.18bl 

From [6.7] and [6.12] we have in general that 

(ee> = ¼gli2i 2 - i l i , )  + (3h - 1)(i,i I + i2i 21 + (1 - ½h)l. [6.19i 

For  I),1 << 1, this then yields 

(ee> = -~[1 - z~o 22 + O(,;~4)]I + 3-1-60211 - -  4-~o)~ 2 + O()~4)](izi2 -- i l i ,)  

+ 4~o,,;,2[1 -4- 0()~2)](ilil + i2iz), [6.20] 

correct  to terms of O()?). (With use of [6.2]-[6.3], this agrees identically with the general 
result for small ),, cited in [7.3].) In the limit where 2 ~ 0, this gives <ee> = ~I, corresponding 
to a r andom distr ibution of particle orientations.  

For  121 >> 1, [6.18] and [6.19] combine to yield the following asymptot ic  result: 

(ee>=ililIH(-,()+ [l-4H(-~)~,[~ll 
• . 2  (/) 

- 1313 I;-I + 0 , 

+ i2izIH().) + I1 - 4H()d} i-)~ 

[6.21] 

wherein H(x) is the Heavyside unit function, 

{ ;  f o r x > 0 .  
H(x) = [6.221 

for x _< 0, 

which is equivalent to H(x) = ½(1 + sgn x). 
We note from both [6.20] and [6.21], as well as from the more  general equat ion [6.19], 

that (ee> enjoys the proper ty  of being invariant under  the simultaneous set of t ransforma- 
tions, 

1 - ~ 2 ,  2 ~  1, 2--,  - 2  ( i . e . G ~  - G ) .  [6.23i 

Clearly, such must be the case since S is invariant under this set of t ransformations (and 

A = 01. 
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In the limit where 121--. ~ ,  corresponding to the absence of Brownian motion, [6.21] 
reduces to 

( ee )  -,- iei 2 (~ ~ + ~) .  [6.24a] 

(ee) ~ ill I (2 ~ - ~). [6.24b] 

The first of these relations corresponds to the fact that when B G  > 0, and the particle 
motion is governed by purely deterministic mechanical principles, the axisymmetric body 
adopts a unique terminal orientation with its axis of symmetry oriented along the x2 axis 
(Brenner 1972c), so that e = i 2 at steady state. A similar interpretation applies to [6.24b] 
for the case where B G  < 0 (Brenner 1972c). 

Rheological properties may be calculated from [4.27]. In the present case this yields 

T = itilT1 + i2i2T2, [6.25] 

upon suppressing the physically irrelevant isotropic term 17"33, that would otherwise have 
appeared. (Thus, t rT  # 0 in the present case; cf. [4.28],) The normal stress differences, 
defined by 

T1 m T I  1 - T 3 3 ,  T 2 ~--- T 2 2  - -  T33 , [6.26] 

are most conveniently expressed in terms of parameters rt and ¢ defined as 

"rl = G(~ - r/), 1:2 = G(~ + q), [6.27] 

in which 

q = Po + ~laoC~[8Q, - 3h0.)Q2 + 62-'g(2)(3Q2 + 4Q3)], [6.28a] 

= - ~ C ~ # o [ g ( 2 ) Q  z + 22- ' {4  - 3h(A)}(3Qz + 4Q3)], [6.28b] 

with values of g and h given generally by [6.15] and [6.16]. 

The symbol rl defined here accords with the general definition of the viscosity function 
set forth in [4.33]. Accordingly, the viscosity ~/ given by [6.28a] necessarily satisfies the 
inequality [4.34], as can also be shown directly by use of [2.41]-[2.43]. 

Rheological results are most conveniently expressed in terms of the intrinsic viscosity 

[q] = (0 - #o)/4'/~o, [6.29] 

and the intrinsic "normal stress" function 

[a] = ~r/4~#o. [6.30] 
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For  I~1 << 1, [6.17] and [6.28] combine  to yield 

[~] : [rl]o - ()o2/210)(2Q2 + Q3) + O1)o'*). [6.31] 

a n d  

[o'] : t)./7J(Q3 - Oz) + O(}~3J, [6.32] 

in which [r/] o is the intrinsic viscosity at zero shear rate, given by [5.17]. These limiting 
results may also be derived independently as a special case of [7.4]. 

In the opposite  limit, where I,~.1 >> 1, [6.18] combines with [6.28] to give 

[r/] : [5/4)(4Qt - 3Q2)+ O(I,;,l-1), [6.33] 

a n d  

[a] : - (15/41Q 2 sgn ). + o(t~.l - ~1. [6.34] 

Consequently,  the intrinsic rheological propert ies  attain limiting asymptot ic  values as the 
Pbclet number  is increased indefinitely. These limiting results apply in the absence of 
Brownian motion,  where purely mechanical  considerat ions (Brenner 1972c) lead to the 
conclusion that, at steady state, the particles are all aligned parallel to either the x 1 or x2 

axes (cf. [6.24]). 
For  spherical particles (cf. [3.23] and [3.24]) it follows that r/ = #o(1 + 5~) and c; : 0, 

whence - Z l  = z2 = qG. Substi tut ion into [6.25] with use of [6.2] and [4.6a] then correctly 
yields Einstein's result. [4.36] and [4.37]. 

Graphs  of [r/] and [g] are presented in figures 4a, 4b, 5a and 5b for prolate and oblate 
spheroids of various axis ratios r r as a function of the dimensionless deformat ion rate 
P = G/D,. Behavior  of the oblate spheroids (figure 4b) is of the "shear- thinning" type, in 
that the intrinsic viscosity decreases monotonica l ly  with increasing deformat ion rate G. 
In contrast ,  for all rr less than about  15, prolate  spheroids (figure 4a) manifest "shear- 
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Figure 4a. Variation of intrinsic viscosity [q] with elongation rate for prolate spheroids of various 
axis ratios suspended in a two-dimensional biaxial extensional flow. 
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Figure 4b. Variation of intrinsic viscosity [ff] with elongation rate for oblate spheroids of various 
axis ratios suspended in a two-dimensional biaxial extensional flow. 

thickening" behavior, wherein the intrinsic viscosity increases monotonically with increas- 
ing deformation rate. However, for particle axis ratios exceeding about 15, theological 
behavior is of the shear-thickening type only at the smaller deformation rates. Beyond some 
critical shear rate (which depends upon r~) the behavior reverts to the shear-thinning type. 
This mixed mode of behavior displayed by prolate spheroids is similar to that pointed out 
by Clarke (1973) for prolate spheroids in uniaxial extensional flows, as is discussed in 
Section 5. 
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Figure 5a. Variation of normal stress function [o] with elongation rate for prolate spheroids of 
various axis ratios suspended in a two-dimensional biaxial extensional flow. 
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Figure  5b. Var ia t ion  of no rma l  stress funct ion [a] with e longa t ion  rate for obla te  spheroids  of 

var ious  axis ra t ios  suspended in a two-d imens iona l  b iaxia l  ex tens ional  flow, 

7. G E N E R A L  S H E A R  F L O W S  S M A L L  P I ~ C L E T  N U M B E R S  

For  values of 12l << 1 the solution of [4.14] and [4.15] correct  to  O(}. 3) is (Brenner & 

Condiff  1974) 

./'= (4re) 111 + :'File) + ) . 2Fz (e )  + , ; .3F3(e)] + O1).4) ,  [7.1a] 

in which 

Ft(e) = (1/2)e- S . e ,  

F2(e) = ( l /8) (e .  S -  e) 2 - (1/60) t r  (~2) _ (1/12B)e.  3 , ( S ) .  e, 

F3(e) -- (1/48)(e • S .  e) 3 - (1/1201 tr {S2)e • S .  e - (1/630) tr (g3) 

- (1/30B)(e • S .  e)e-  J , (S )  • e - t l /120B)e ,  j , ( ~ 2 ) ,  e 

+ (1/72B2)e. j 2 ( g ) ,  e 

Here,  for any dyadic  D, D" is the dyadic  defined as 

D "  = D . D  . . . . .  D (ntimes).  

The dyadic  J ,  cor responds  to a dimensionless  J a u m a n n  derivative, 

J,(D) = D. A - A.D, 

with A, as defined in [4.6], whereas  

s~,(o) = J , { S , ( o ) /  

[7.1 b] 

[7.1c] 

[7.1d] 

[7.2a] 

[7.2b] 

[7.2c] 
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denotes a multiple Jaumann derivative. The scalar operator 

tr D = I :D [7.2d] 

represents the trace of the dyadic D. 

From [4.29] this yields (Brenner & Condiff 1974) 

(ee> = (1/3)I + (2/15)S + (22/630)[6S 2 - 21 tr (g2) _ 7 B - i j , ( g ) ]  

4- (23/56,700) E60S 3 - 48S tr (~2) _ 20I tr (~3) _ 1 3 5 B -  1 j , ( ~ 2 )  

+ 105B-2j2(~)] + 0(24). [7.3] 

Use of this relation in [4.27] leads to the following expression for the mean deviatoric 
stress in the suspension: 

T = 2#oGS + t~/~oG[To + 2TI + 22T2 4- O(23)], [7.4] 

with To ~--- 2 (5Q1  --  Q2 4- 2Q3)S, [7.5a] 

21T 1 = 12(Q3 - Q2)S  2 - 7NJ.(S), I7.5b] 

630T 2 = 6Q2 [ -  10fg 3 4- g tr (g2) + 5B- t j , (g2) ]  + 5N[7B- i j2 (g )  _ 6j,(f~2)] 

4- 2Q3120S 3 - 16S tr (g2) _ 15B- I j , ( ~ 2 ) ] .  [7.5c] 

All isotropic terms have been suppressed in these expressions (so that tr T ~ 0), and [2.36] 
employed to simplify the final result. Equation [7.4] represents the explicit rheological 
constitutive equation for a dilute suspension of axisymmetric particles, valid for the case 
where 121 << 1. It is, of course, highly nonlinear. 

Equation [7.5] can be expressed in a somewhat simpler form by repeated application of 
the Hamilton-Cayley theorem and extensions thereof (Rivlin 1955), according to which 

- D  3 4- ~ I D  2 - . ~ 2  D 4- ~ 3 1  = 0 

for any dyadic D. Here, ~ ,  ~2 and ~3 are the scalar invariants of D: 

~1  = tr D,  ~ 2  = ½[tr D - tr (D2)], 93 = det D. 

This leads, for example, to relations such as 

g3 = lde t  S + ½Str(g2), 

and h a = ½A tr (~2). 

Despite the fact that the orientational distribution function [7.1] is known to 0(23) it is 
only possible in general to compute the rheoiogical properties to O(22), as in [7.4]. This 
behavior derives from the nature of the last term on the right-hand side of [4.27]. That A- 
appears as a coefficient in this term shows that a calculation of the mean deviatoric stress 
to 0(2 n) presupposes that ( ee )  and, hence, f (e) be known to 0(2 n+ t) (n = 0, l, 2 . . . .  ). It is 
only for bodies characterized by the property 3Q2 + 4Q3 = 0 that this comment is invalid. 
Of the nonspherical bodies discussed in Section 3, this condition is met only by the "non- 
interacting" dumbbell (cf. [3.65d] and [3.65e]). For this particular case it is possible to 
explicitly calculate the term of 0(23 ) in [7.4] for the dumbbell. We shall not, however, write 
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down this more exact result here, since it has already been given elsewhere (Brenner & 
Condiff 1974) to this order. 

In the limit where 2 = 0, [7.4] reduces to 

in which 

T = 2qS, [7.6] 

/7 = ~o[ 1 4- (~(5Q1 -- Q2 ~- 2Q3)]" I 7"7] 

Thus, at low shear rates or, more precisely, for 2 ~ 0, the suspension displays Newtonian 
behavior, the viscosity coefficient being given by [7.7]. Alternatively, in terms of the intrinsic 
viscosity [t/], defined generally in [5.15], it follows that 

[r/]o = 5Q1 - Q2 + 2Q3, [7.8i 

in which the subscript "zero" refers to the limiting value at zero shear rate. 
Equation [7.8] is identical to [5.17], derived for the special case of uniaxial extensional 

flow, which is irrotational. That the two results are identical is, of course, a consequence of 
the fact that [7.8] applies to any homogeneous shearing flow, irrotational or not. 

For the special case of spheroidal particles, possessing values of the material constants 
tabulated in [3.6]-[3.10], equation [7.8] accords exactly with the analogou~ "'zero shear" li.e. 
dominant Brownian motion) result of Simha (1940, 1945), Scheraga (1955). Their computa- 
tions were, however, performed only for a simple shearing flow, rather than a general 
homogeneous shearing flow, as in the presentation calculations. Moreover, they employed 
scalar energy dissipation techniques to compute the intrinsic viscosity, in contrast to the 
general dynamical tensorial techniques utilized here. For rp >> 1, the values tabulated in 

[3.20] for a long thin prolate spheroid make 

= 0 1 
[q]o 15[ln 2rp - 0.5 + In 2% - 1.5 + 5 + ln~rp " [7.91 

in agreement with the result of Kuhn & Kuhn (1945), derived using scalar energy dissipation 
methods for the case of a simple shearing field. Analogous results may be derived for any 
slender body by use of the values of Q1, Q2, Q3 for such bodies, tabulated in Section 3 

For the case of "non-interacting" dumbbells, [7.8] becomes 

[q]o --'-- arp,3 2 [7.10] 

(where rp is given by [3.56]), a well-known result (Brenner 1972a). 

8. SIMPLE SHEAR FLOW 

Simple shearing flows are of special interest in rheological applications. Consider a 
suspension subjected to the shear flow 

U = izGx 1, [8.11 
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Figure 6. or ienta t ion of a body of revolution in a simple shear flow. 
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taking place in the x~ - x2 plane, as in figure 6, G being the shear rate. Dimensionless 
shear and vorticity dyadics for this flow are 

g = (1/2)(ili2 + i2il), A = (1/2)(i2it - ili2). [8.2a, b] 

Substi tut ion of [5.5] into [4.27] gives rise to the mean deviatoric stress, 

T = 2r/G[½(ixi 2 + lzit)] + i t i t z  I + i2i2z 2. [8.3] 

We have suppressed the physically-irrelevant isotropic term IT33 that would otherwise 
have appeared in this expression. Hence, the deviatoric stress in [8.23] possesses a nonzero  
trace. In this expression, 

tl = T I 2 / G  [8.4] 

is the viscosity function, whereas Zl and r 2 are the first and second normal  stress differences 
of  Coleman et  al. (1966), defined generally by [6.26]. In [8.3], 

[r/] = 5Q1 - ~ Q 2 ( s i n  2 0)  - ~B-  1(3Q2 + 4Q~)(sin 2 0 cos 2~b) 

+ ~2 -1 (3Q2  + 4Q3)(sin 2 0 sin 2~b), [8.5] 

[zl] = 5[¼(B- 1 _ 1)Q2 + B -  tQ]] (sin 2 0 sin 2~b) 

- 152-1(3Q2 + 4Q3)(1 - 2~(sin 2 0)  - ½(sin 2 0 cos 2~b)), [8.6] 

It2] = - 5[¼(B- l + 1)Q2 + B -  IQ]] (s in  2 0 sin 2~b) 

- 152-1(3Q2 + 4Q3)(1 - 2a(sin 2 0)  + ½(sin 2 0 cos 2~b)), [8.7] 

wherein [r/] is the intrinsic viscosity, defined in [5.15], and 

zl z2 [8.8a, b] 
= ,li-mo , oG' = ° 
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are the "intrinsic normal stress differences". In these expressions, 

f?f  (sin 2 0) = sin 2 0 f(O, ~b} sin 0 dO d~b, etc. [8.91 

Relations similar to [8.5]-[8.7] have been given by Hinch & Leal (1972) lbr the special 
case of spheroidal particles.* However, their expressions involve the additional moments, 
(sin 4 0 sin 2~),  (sin 4 0 sin 2 2q~) and (sin 4 0 sin 4~b). These may, however, be expressed in 

terms of the three lower-order moments appearing in [8.5]-[8.7] by means of the following 
identities, derived from the general theorem [4.26] applied to the shear flow [8.27: 

(sin 4 0 sin 2~b) = (sin 2 0 sin 24~) - 22-1(3(sin 2 0) - 2), [8.10a] 

(sin 4 0 sin 2 2~b) = (sin 2 0) + B- l(sin2 0 cos 2q~) - 6).- X(sin 2 0 sin 2~h), [8.10bi 

(sin40sin4qS) = - 2 B - l ( s i n 2  0sin2~b) - 12).-1(sin2 0cos2~b). I8.10c] 

The quantity q defined by [8.3] accords with the general definition of the viscosity function 
in [4.33]. Accordingly, [4.353 shows that the intrinsic viscosity [rl], given in present circum- 
stances by [8.5], can never be less than unity. Inequalities I2.41]-[2.44] may be invoked to 
provide an independent demonstration of the fact that [q] > 1, irrespective of the shapes 
of the suspended particles. 

Dominant Brownian motion 

For the case where [).j << 1, it follows from [7.3] and [8.2] that 

~),2r!(1 7B-1)itil + ½(1 + 7B-1)i2i2 i3i3] ( e e )  = ½1 + ~)4 i l i  2 + izi 1) + 63o ~ L2 - -  

_ 1 " 3  3~g~6~ (3 + 35B-2)(ili2 + i z i l )  + O(J.4}, [8.1l] 

in which I = ili t + i2i 2 + i3i 3. Use of [5.5] in conjunction with some elementary trig- 
onometric identities then gives for this case, 

1 "2 (sin 2 05 = ~ + ~ z  + 0(5.4}, [8.12a" 

(sin z 0sin 2~b5 = 1 - ~s[/~ - 1~-60(3 + 35B-2)). 3 + O():)], [8.12b] 

(sin 2 0 cos 2q~) = -~ooB 122 + O()¢~). [8.12c] 

Substitution of these into [8.5] [8.7] yields 

[q] = [~/]o - ~ 6 o ( 1 2 Q 2  + 6Q3 + 3 5 B- 'N )  22 + O( )~4}, [8.13a] 

1( [z,] = [~ Q3 - Q2) - ~N]2 + O(,(3), [8.13b] 

IT2] = [+(Q3 - Q2} + 1N] 2 + O (  '~3)' [8.13c] 

with [q]o given by [7.81. 
For the spheroid these reduce to previously known results (Brenner & Condiff 19741. 

* If we identify their coordinates (x, 1', z} as our  ( x  I , x 2, xa) ,  then their angles (0~,  ~p~) are identical to our  angles 
(0, ~1. However,  their (z~, z 2} are our  (r2, r0,  defined in [6.26]. 
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For the "non-interacting" dumbbell they adopt the forms* 

[~] 3 2 = ir~; [1 - ~p2 + OtP')], 

[ t t ]  = O, 

[~2] = ~ -  2 2or~P + O(p3), 

[8.14a] 

[8.14b] 

[8.14c] 

where P = G/D, is the rotary P6clet number. These results are, in fact, well known (cf. 
Brenner & Condiff 1974, and earlier references cited therein). 

"First-order" dumbbell in simple shear flow 

Substitution into [8.5]-[8.7] of the material Q constants given by [3.73] yields the general 
expressions 

3r 2 f r l - ~ h "  ~ 
[r/] = 4(1 - h)[nokTgh) + 0(1), [8.15a] 

[zi] = 8(i- ---h) ~ + O(1), [8.15b] 

[z2] - [zt] = 8(I - h)(nokTA~l + O(1), [8.15c] 

with the terms in curly brackets given by 

r l - t  h 3 l l - h ~  • 2 -fi9( h ) 
= ~/]--S-~J ((sin O> + (sin 2 0 cos 2~b)) - • , (sin 2 0 sin 2~b), [8.16a] 

nok T2h 

108/__L_h 1 
= p2 /1  _ 2hi( 1 - ~(s in20)  - ½(sin20cos2~)) ,  [8.16b] 

nok T2~ 
I 

o  [1-h I 108/h_L_l 
nokT2~ = P~I  - 2hi (sin2Osin2c~} + p 2 / 1 - 2 h i  (sin20c°s2c~)" [8.16c] 

These expressions are valid for the case where rp >> 1, i.e. where the small interaction 
parameter h defined in [3.71] satisfies the condition h << 1. The parameter to which the 
gauge symbol O in [8.15] refers is h. In these equations, P is the rotary P6clet number, 
P = G/D,, in which (cf. [2.33] and [3.73a]), 

kT(1 - h) 
1), = 12nl~ocl 2 [8.17] 

* The normal  stress difference [r~] for the non-interacting dumbbell  is identically zero to all orders  in P. 
Since the deviatoric stress for non-interacting dumbbel ls  can be calculated to 0().3)(c£ the comments  in the 

paragraph following [7.5]), it is possible to write down a somewhat  more  accurate expression for [32] than is given 
in [8.14c], namely 

3 [  19pa ] 
[¢~]= q P-6-Y6 +OIVS) " 

J,M.F., Vol. I, No. 2 D 
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Equations [8.15]-[8.16] agree identically with the results of Stewart & Sorensen t1972), 
when converted to equivalent notation.* That two such vastly different methods of derivation 
should yield precisely the same results is remarkable. 

For the case where P << 1, we find upon setting B = 1 and 2 = P in [8.12], and intro- 
ducing those results into [8.16], that 

- ( ~ ) [  1 ] 3( h ) [  19 p2 1" rl rh - 1 - p2 + O(p4)  _ 1 - + O ( P  41 [8.18a] 

n, ,kT)~  - 3511 - 2h! [1 + Oip2)], [8.18b3 

nokT22 - 5 1 ~ - -  2h][_ ~ - 0  + O(P4)_ 5 1 - 2h 
[1 + O ( p 2 ) 3 ,  [ 8 . 1 8 c  I 

in exact agreement with Bird & Warner (1971), upon replacing their ,~hh by P/6. 

S lender  bodies and dumbbel ls  charac ter i zed  by B = 1. Arb i t rary  Pkcle t  numbers  

The partial differential equation governing the orientational distribution of particles 
immersed in the simple shear flow [8.21 is, from [4.14] and [5.5], governed by the relations 

sin 0 ~ sin 0 ~0] + sin 2 0 ~49z sin0 (}0 ('f{~ sin 0) + ~ . , [8.193 

subject to the normalization condition 

f,;~ff./sinOdOd49, [8.20] 

with f - f(O, 4): B, P), in which P = G/D~, and 

~J = ¼B sin 20 sin 249, [8.21a] 

,h = ½(1 + Bcos 249). [8.21b3 

are the appropriate dimensionless components of the hydrodynamic angular velocity of 
the particle. 

* In effecting the compar i son  one musl  util ize the fol lowing no ta t iona l  equivalences :  

S tewar t  & Sorensen II972t, 
and  Bird et  al. (1971'1 0 ~ Ix, v. zl z~, zx, - rr, r~  - r:: 

Th is  paper  0 (n/2i ~ ( x 2 , . x l .  - x 3 )  -- TIz - (T22  - T I 0  - { T l l  T331 G 

Stewar t  & Sorensen (1972). 
and  Bird et  al. (1971} L r ~7~ no 3~  2 O ~,'2 )~, 

This  paper  21 c ,u, ,  34)/8rw s z l ~ T11 - 7"33 t"2 - "el -~ 7"22 - T i t  1~6Dr 

with  D, given by [8.17]. Moreover ,  in our  no ta t ion ,  d = 1 in the Stewar t  & Sorensen (1972) and  Bird et al. (1971) 

references. 
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Equations [3.46], [3.54], [3,65] and [3.73] reveal that, for all the "slender" bodies (including 
spherical dumbbells with first-order interactions) whose properties are tabulated in 
Section 3, 

B --. 1 for rp >> 1. [8.22] 

Upon setting B = 1 in [8.21], equation [8.19] adopts the form 

1 sm 0 ~ + = (sin 2 0 cos Of) + ( cos2 O.f) " [8.23] 
s i n 0 ~  sin - 2 b ~ ' ~  -L  sin0 

where, now, f - f(O, dp; P). This equation is identical to the steady-state equation of Bird & 
Warner (1971): (cf. the notational equivalences in the footnote on page 2441, numerical 
solutions of which are provided over the complete P6clet number range, 0 _< P < ~ ,  by 
Stewart & Sorensen (1972). The latter's results may therefore be employed to obtain values 
for the three goniometrical factors, (sin 2 0), (sin 2 0sin 24)  and (sin 2 0 c o s 2 ~ ) ,  as a 
function of P, for the special case where B = 1. In conjunction with [8,5]-[8.7], such 
information may be employed to calculate the complete rheological properties of dilute 
suspensions of various slender bodies (i.e. bodies for which rp >> 1) suspended in simple 
shearing flows. 

Stewart & Sorensen do not directly tabulate the goniometric factors. Rather, they tabulate 
numerical values of the three viscometric functions in [8.16] at various values of P for the 
special cases where h = 0 and h = 3/8. When h = 3/8, simultaneous solution of [8.16a] to 
[8.16c] for the goniometrical factors, yields 

(sin 2 0) = [162(25P 2 + 486)]-115P2(810 - 108X - 5 p 2 y )  + 162(324 - 2p2y- P2Z ) ] ,  

p 2 y  
(sin 2 0 cos 2~b) = 2 3(sin 2 0), 

81 

P Z  18 
(sin 2 0 sin 24 )  = 45 5P (sin2 0 cos 2~),  

in which X, Y and Z, respectively, represent the left-hand sides of [8.16a, b, c] at h = 3/8. 
Use of the tabulated values of X, Y and Z presented by Stewart & Sorensen (1972), in con- 
junction with the above three equations, then leads to the values of the goniometrical 
factors noted in table 5. These were confirmed by computing X, Y and Z at h = 0 from 
[8.16] using the values in table 5, and comparing the results so obtained with those tabulated 
by Stewart & Serensen at h = 0. 

In the particular case of the "first-order" dumbbell, the large P6clet number values 
tabulated in table 5 are limited in their range of applicability to circumstances in which 
the dimensionless interaction parameter h is sufficiently small to satisfy the inequality 
(cf. [9.22]) 

h - l  >> p1/3 >> I. 

Thus, Stewart & Serensen's (1972) use of the value of h = 3/8 (corresponding to the case 
where the spheres touch) may lead to significant errors in the theoretical predictions at the 
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Table 5. Goniometric factors for bodies characterized by 
B =  1.* 

P (sin2 0) (sin2 0 cos 2~b) (sin2 0 sin 2~) 

0 0.66667 0.00000 0.00000 
0.6 0.66723 - 0.00395 0.03957 
0.75 0.66754 - 0.00612 0.04916 
1.5 0.67000 - 0.02311 0.0~376 
2.0 0.67231 - 0.03886 0.11943 
3.0 0.67788 - 0.07592 0.15981 
4.5 0.68700 -0.13328 0.19684 
6.0 0.69569 - 0.18394 0.21557 
9.0 0.71055 - 0.26154 0.22825 

12.5 0.72436 -0.3245o 0.22840 
15 0.73237 - 0.35,~ 23 0.22548 
20 0.74568 0.40938 0.21782 
25 0.75619 - 0.44680 0.21001 
30 0.76465 - 0.47573 0.20276 
40 0.77816 -0.51879 0.19042 
50 0.7886 - 0.5499 0.1804 
60 0.7967 - 0.5738 0.1722 
90 0.8151 -0.6232 0.154t 

120 0.8274 - 0.6547 0.1418 
180 0..8435 - 0.6944 0.1255 
300 0.866 - 0.741 0.107 
420 0.876 - 0.765 0.096 
600 0.889 -0.791 0.086 

P-~ "~.+ 1-0.974P - t 3  -1+1 .796P  -1~3 0.727P 1~3 

* The corresponding goniometric factors for the case B = - 1 
may be obtained directly from the values tabulated herein by 
means of the transformations noted in equations E8.26]. 

-t See Appendix F. 

l a r g e r  P6c le t  n u m b e r s ,  e v e n  a p a r t  f r o m  t h e  fact  t h a t  a f i r s t - o r d e r  h y d r o d y n a m i c  i n t e r a c t i o n  

t h e o r y  w o u l d  b e  u n l i k e l y  to yie ld  c o r r e c t  r h e o l o g i c a l  r e su l t s  for  s m a l l  s e p a r a t i o n  d i s t a n c e s .  

I t  s h o u l d  b e  e m p h a s i z e d  t h a t  t he  r e s u l t s  c i t ed  in t a b l e  5 a p p l y  to  a n y  a x i s y m m e t r i c  b o d y  

for  w h i c h  B = 1, a n d  is n o t  l i m i t e d  to  d u m b b e l l s  c o m p o s e d  o f  d i s t a n t  sphe re s .  W h e n  B is 

n o t  exac t l y  un i ty ,  b u t  is n e a r  to  it, t h e  a n a l y s i s  o f  S e c t i o n  9 (cf. [9.12] a n d  [9.19]) s h o w s  t h a t  

t h e  l a r g e r  P6c le t  n u m b e r  v a l u e s  t a b u l a t e d  in t a b l e  5 a r e  v a l i d  o n l y  w h e n  

(1 - -  [ n t ) - 1 / 2  )> p1 /3  >> 1, E8.24] 

in w h i c h  t h e  g o n i o m e t r i c  f a c t o r s  a r e  t h o s e  t a b u l a t e d  in t a b l e  5. 

Circular disks and other bodies for which B = - l .  Arbitrary P~clet numbers 

As c a n  b e  ver i f i ed  b y  d i r e c t  s u b s t i t u t i o n  of  E8.19]-[8.21]  g o v e r n i n g  t he  o r i e n t a t i o n a l  

d i s t r i b u t i o n  f u n c t i o n  r e m a i n  i n v a r i a n t  u n d e r  t he  set  of  s i m u l t a n e o u s  t r a n s f o r m a t i o n s ,  

B ~ - B, [8 .25a]  

0 ---, O, [8 .25b]  
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~b --, (n/2) + ~b. [8.25c] 

Hence, Stewart & Sorensen's numerical solution for the case B = 1 may be utilized for the 
case where B = - 1 by replacing the goniometric factors in table 5 as follows: 

(sin 2 0)  ~ (sin 2 0) ,  [8.26a] 

(sin 2 0 cos 24~) --, - (sin 2 0 cos 2~b), [8.26b] 

(sin 2 0 sin 2~b) --, - (sin 2 0 sin 2~).  [8.26c] 

From [2.29] it is seen that B = - 1 is equivalent to 

re = 0, [8.27] 

which is the value appropriate to an infinitesimally thin circular disk (cf. [3.14] and [3.15]). 
Substitution of the material constants cited in [3.77] into [8.5]-[8.7] leads to the following 
expressions for the three viscometric functions appropriate to a dilute suspension of 
circular disks of radii b suspended in a simple shear flow: 

q - q o  ~-4 3 2 5 2 3 2 ] 
I~o rib3 = -t_ - ~ (s in 0)  - ~ (s in 0 cos 2~b) - ~ (s in 0 sin 2~) .~,  [8.28a] 

T~ = ~[(s in  sin 24~) + 1 - ~ (sin 2 O) - ~ (sin 2 0 cos 2~)  , [8.28b] 
?toGlib 3 

r2 _ - 2 ( s i n 2 0 s i n 2 4 )  + 1 - ~ ( s i n 2 0 )  + ~(s in  0cos2q~) • [8.28c] 
I~o Gnb 3 

in which the goniometrical factors are those derivable from table 5 via [8.26]. Here, n is 
the number of disks per unit volume of suspension. The relation 2 = - P  for circular disks 
has been employed in the derivation, in which the rotary diffusion coefficient is 

D, = 3k T/321zob 3. [8.29] 

Goniometric factors for the general case 

Scheraga et ai. (1951, 1955) numerically solved equations [8.19]-[8.21] governing the 
orientational distribution function for axisymmetric bodies immersed in a simple shear 
flow, for values of 0 < P < 200 and for B lying in the range 0 < B < 1 (i.e. 1 < re < ~)- 
Though Scheraga et al. (1951, 1955) had in mind only spheroidal particles, characterized 
by axis ratios rp defined by [3.15], their results may, in fact, be applied to axisymmetric 
bodies of any shape. This can be done by observing that rp = re for spheroids. Hence, if we 
merely reinterpret their rp as being r e for a general axisymmetric particle, then-- in  view of 
[2.29] and [2.30], relating re to B- - they  have, in fact, actually solved the general system of 
equations [8.19]-[8.21] for these more general bodies. 

The three goniometricai factors (sin 2 0 sin 2~),  (sin 2 0 cos 2~b) and (sin 2 0) (hereafter 
denoted by fl, ~, and 6, respectively) as functions of r e and P, required in our rheological 
calculations, are not given explicitly by Scheraga et al. Rather, they are contained implicitly 
in their streaming birefringenee (Scheraga et ai. 1951) and intrinsic viscosity (Scheraga 1955) 
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calculations, f rom which they may  be extracted by means  of the procedure  described below. 

For  the p h e n o m e n o n  of s t reaming birefringence, Scheraga et al. (1951~* tabulate  values 

of the extinction angle Z = z(r,,, Pt and the "or ien ta t ion  factor" F = F i r  e, PI. These two 

paramete rs  are related to the goniometr ica l  factors ,8 and 7 via the relat ions 

7z 1 7 
4 -  7 . = 2 t a n  ~ - ,  '8 

or, equivalently.  

and 

in which 

- tan 2Z = '8/3', [8.30] 

An = 2rw~- l (g  t - -  g21F, 

F = (~,2 _.~ fl2}1,'2 [8.31i 

is the or ientat ion factor. Here, {n/41 - g is the angle between the isocline and the principal 
strain axis, An is the difference in index of refraction a long the two principal axes of the index 

of refraction tensor, c the volume concent ra t ion  of solute particles, h the mean index of 

refraction of the solution, and gl - g2 the optical  an i so t ropy  factor for the solute particles. 

For  ~ > r,. >_ 1 li.e. 1 > B > 0t it can be shown that  ;' < 0 and fl > 0 for all P. Hence. 
from [8.30] and [8.31t we find for this case that  

(s in 2 0 sin 24,) = F sin 2Z, [8.32ai 

(s in  2 0 cos 24,) = -- F cos 2Z, [8.32b? 

valid for r,, >_ 1. Using the tabula ted  results of Scheraga et al. 119511 for this case, giving F 
and 7. :as functions of  r,, and P. we have calculated values of the two goniometr ical  factors 

from [8.32]. These are tabulated in tables 6a and 6b as functions of r e and P. for ~ > r,, >_ I. 

Values of these two goniometr ical  factors for 0 < r,, < 1 [i.e. - 1 _< B <_ 01 may be d e m e d  
from this tabulat ion via the t rans format ions  indicated in [9.4]. 

Values of (sin2 0 sin 24') and (sin2 0 cos 24') at r e = 3:, {i.e. B = I) may  be compared  
with those tabula ted  in table 5, derived from the independent  calculat ions of Stewart  & 
Sorensen (1972) in connect ion with the rheological  propert ies  of dumbbel l  suspensions. In 
general, the agreement  is excellent for P < 60, thereby providing s t rong conf i rmat ion of the 
accuracy of both  sets of numerics.  As indicated by Scheraga et al. (19511, the values of 7. 
and F for P > 60 are of uncertain validity, whence this same uncertainty at taches to the 
values of the goniometr ical  factors in tables 6a and 6b beyond  P = 60. 

* The quantities here designated by the symbols  r., P, F and B are denoted in Scherega et al. ( 19511 as p. ~. I and 

R. respectively. 
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252 HOWARD BRENNER 

Numerical values of the remaining goniometrical factor (sin 2 0) as a function ofr~ and P 

(for ~ > r e > 1) can be obtained from Scheraga's (1955) tabulation of the intrinsic viscosity* 
of prolate spheroids as a function of these parameters, in conjunction with tables 6a and 6b. 

In particular, from [8.5] we have that 

4 Q t .  6_tip( 4Q3~ sin2 1 ( 4 Q ~ / ( s i n E 0 c o s 2 4 ) )  4[r/] [8.33] (sin2 0) = ~ 2  + 1 + ~ 2 / (  0 sin2~b) - 1 + 3 0 2 /  - 15Q~" 

For r e > 1, values of (sin 2 0 sin 2~b) and (sin 2 0 cos 2q5) appearing on the right-hand side 

of this relation are available as functions of re and P in tables 6a and 6b. Values of Q1, Q2, 
Q3 and Q] and B as functions of r e may be obtained for prolate spheroids (for which r e = rp) 

from [3.8]-[3.15], Equation [8.33] then enables (sin 2 0) to be calculated in terms of re and P. 
The results of such a calculation are tabulated in table 6c. In view of the transformation 

indicated in [9.4] these same values of (sin 2 0) apply if r e is replaced by 1/r e in the table. 
Hence, this furnishes the goniometric factor (sin 2 0) over the complete range of equivalent 

axis ratios, 0 < r e < ~ ,  at least for IBI < I. An independent check of the validity of the 
transformation [9.4] was made by a comparable  calculation of (sin z 0) using Scheraga's 

(1955) tabulation of the intrinsic viscosity of obla te  spheroids (0 _< r,, < 1t. Results sub- 
stantially identical to those tabulated in table 6c were obtained by this procedure, generally 

to within a few units in the last significant figure. 
The values of (sin z 0) in table 6c at the larger values of r e ought to be comparable to 

those in table 5 at B = 1 (re = ~) ,  which derive from the dumbbell analysis of Stewart & 

Sorensen (1972). In general, the agreement between the two independent sets of (sin 2 0) is 
quite good, again providing confirmation of the numerics of both sets of authors. 

Yet further support for the general accuracy of the values tabulated in tables 6a, 6b and 

6c derives from the asymptotic analyses of Hinch & Leal (1972) for P >> 1, discussed in 

Section 9. 
Values of the goniometric factors in tables 6a, 6b and 6c may be utilized to compute the 

variation of intrinsic viscosity and normal stresses with rotary P6clet number  for any 
axisymmetric particles immersed in a simple shear flow. This requires use of [8.5]-[8.7] in 
conjunction with the Q and B values for any of the bodies characterized in Section 3. In 
this manner, numerical values of the intrinsic viscosity function [r/], and of the dimensionless 

normal stresses. E; - [zi]P (i = 1, 2), 

E 1 = rl/ChlaoD,, Z 2 = r2/(OlaoOr, [8.34a, b] 

were calculated as functions of the dimensionless shear rate P = G/D,  for both prolate and 
oblate spheroids of various aspect ratios r v, the results being cited in tables 7a, 7b, 7c and 
8a, 8b, 8c. Results for the intrinsic viscosity agree, of course, with those of Scheraga (1955), 

* In Scheraga's (1955) notation, the intrinsic viscosity is denoted by v, rather than [q], as in the present paper. 
Moreover, his spheroidal integrals, J, K, L, M and N, are related to our Q values by means of the following relations: 

J + g = 5(Q~ - ¼02), L = 5tQt + Q~), M = 5Q~, N = 30B-'(Q3 - Q°3). 

These relations, in conjunction with [&10b], show that Scheraga's 11955) general expression for the intrinsic 
viscosity of a dilute suspension of spheroids (cf. his equation [9]) is identical with our equation [8.5]. 
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since the goniometric factors used in their computation were derived, in part, from Scheraga's 
(1955) tabulation of [r/] vs rp and P. The normal stress results cited in the tables have not 
previously been available over the complete spectrum of P6clet numbers. Some of the 
results in these tables are also presented graphically in figures 7-12. 
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R o t a r y  P ~ c l e t  N u m b e r ,  P =G/Dr 

Figure 7. Variation of intrinsic viscosity with shear rate for prolate spheroids of various aspect 
ratios suspended in a simple shear flow. 
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Figure 8. Variation of the first normal stress difference with shear rate for prolate spheroids of 
various aspect ratios suspended in a simple shear flow. 
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Figure 9. Variation of the second normal stress difference with shear rate for prolate spheroids of 
various aspect ratios suspended in a simple shear flow. 

At sufficiently low rates of shear these suspensions display Newtonian behavior, in that 
the intrinsic viscosity, [r/]o say, is sensibly independent of the shear rate, and the normal 
stresses are effectively zero. Since the intrinsic viscosity decreases monotonically with 
increasing shear rate, the general rheological behavior of these suspensions is of the shear- 
thinning type. As the rate of shear is increased indefinitely, the intrinsic viscosity ultimately 
approaches an asymptotic value, [r/]~, (see tables 9a and 9b). 
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Figure 10, Variation of intrinsic viscosity with shear rate for oblate spheroids of various aspect 
ratios suspended in a simple shear flow. 
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Figure 11. Variation of the first normal stress difference with shear rate for oblate spheroids of 
various aspect ratios suspended in a simple shear flow. 
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Figure 12. Variation of the second normal stress difference with shear rate for oblate spheroids of 
various aspect ratios suspended in a simple shear flow. 
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Table 9a. Limiting values of the three viscometric functions at infinite shear rate 
for prolate spheroids. 

1 2.5000 0.00000 0.00000 
2 2.5695 0.51826 5.1612 
3 2.6836 1.5523 24.178 
4 2.8010 2.9354 66.092 
5 2.9184 4.5850 142.06 
7 3.1375 8.5585 449.21 

10 3.4366 15.858 1539.6 
16 3.9296 34.518 8026.6 
25 4.6208 70.824 39,672 
50 7.6823 212.24 497,980 

Table 9b. Limiting values of the three viscometric functions at infinite shear rate 
for oblate spheroids. 

rp t [~/], - ( Z ~ t ,  (]22), 

1 2.5000 0.00000 0.0000 
2 2.5659 0.76932 3.5249 
3 2.6507 3.1300 13.296 
4 2.7239 7.5432 31.339 
5 2.7828 14.57l 60.094 
7 2.8675 38.804 159.69 

10 2.9403 109.74 451.96 
16 2.9977 437.76 1800.9 
25 3.0287 1650.1 6759.3 
50 3.1768 13,135 53.351 

The primary and secondary normal stress differences are of opposite algebraic signs. 
The magnitudes of both increase monotonically from zero as the shear rate is increased, 
eventually attaining asymptotic values, (Y~I)~ and (E2)~, at an effectively infinite rate of 
shear (see tables 9a and 9b). 

In general, the "exact" values of the viscometric functions cited in tables 7 and 8 at small 
P6clet numbers compare favorably with the asymptotic expressions that may be derived 
for these quantities from [8.13], namely 

E~] = [~30  - F.tre)P 2 + o ( e  4) 

E t = -F I ( r , , )P  2 + O(P  4) 

2 2 = F2(re)P 2 + O(P  4) 

with [r/]o given as a function of r e by [7.83, and 

F~(re) = ~6oB2(12Q2 + 6Q3 + 35B-1N), 

Fl(re) = B [ ~ N  - ~(Qa - Q2)3, 

F2(r~) = B[kN + ~ ( Q 3  - Q2)]. 

~8.35al 

[8.35b] 

[ 8 . 3 5 c ]  

[8.36a3 

[8.36b] 

[8.36cl 
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These demonstrate that the viscosity rl attains a constant limiting value at P = 0, whereas 
the normal stress differences rl and.z2 vanish in this limit'. 

In the opposite limit,'where P >>1 (and, simultaneously, P>> r) + re- 3), the goniometric 
factors required in  [8.5]-[8.7] may be  obta ined from table 10 in the next section. The 
limiting values, [F/]oo, (12i)~ and (Y-2)®, o f tbe  viscometric functions thereby obtained for 
spheroids at infinite shear rate are tabulated in tables 9a and 9b.* As the shear rate G is 
increased indefinitely, the conditions that P >> 1 and P >> r~ + re-3 will always be fulfilled 
eventually. Hence, the asymptotic ~results cited in tables 9a and 9b, ~ which derive from the 
"weak" Brownian motion analysis of Section 9, show that the viscosity and normal stress 
functions each attain nonzero limiting values at infinite shear rate, Indeed, a slightly more 
accurate version of [9.10] shows, at least for the case where rp >> 1, that these limits for 
spheroids are 

rp [8.37a3 [~/3~ = 0.315 In 2rp - 1.5' 

(Yl)~ = - 4(ln 2rp - 1.5)' [8.37b] 

(Y~2)~ = r~ [8.37c] 
4(ln 2rp - 1.5) 

Comparison of the asymptotic results of tables 9 with the "exact" values cited in tables 7 
and 8 at P = 60 reveals that the infinite shear rate asymptotic limit is approached only 
very slowly as the P6clet number is increased, especially for the extreme aspect ratios 
rp >> 1 and rp << 1. respectively, appropriate to prolate and obla te  spheroids. 

It is of interest to compare the intrinsic viscosity of a suspension composed of (touching) 
spherical doublets with that of the corresponding singlet suspension at the same solids 
volume fractional concentration, fin making the comparison it should be noted that when 
the spheres touch there exists no relative rotation or translation of the two spheres in a 
simple shear flow (O'Neill & Majumdar 1970), so that they behave like a single rigid body.) 
The intrinsic viscosity in the singlet case is. of course, given by Einstein's relation as 
[r/] = 2.5. By contrast, from [8.5], tables 3 and 10, and [8.12], the intrinsic viscosities of the 
doublet suspension at zero and infinite shear rates are, respectively, [~/]o = 3.58 and 
[r/]~ = 3.02. The effect of including such particle-particle interactions is thereby to increase 
the resistance of the suspension to shear. 

9. S I M P L E  S H E A R  F L O W .  L A R G E  PI~C LET N U M B E R S .  [BI < 1. 

By far, the majority of the theoretical rheological calculations reported in the literature 
pertain to the case where the rotary diffusion is dominant over the shear, i.e. P = G/D, << 1 

* On the other hand, when P >> I, but ~ >> P >> 1 (or r~ -3  >> P >> 1), corresponding to the "intermediate" case 
d/scussed in Section 9, the appropriate values of the three viscometric functions may be obtained from [9.16] to 
[9.18] in conjunction with [9.15]. 
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(Kirkwood 1967, Bird et al. 1971). This is the case discussed in Sections 7 and 8. Only 
recently have rigorous asymptotic techniques (Hinch & Leal 1972) been developed for the 
opposite case, where P >> 1. Thus far, these methods have only been applied to the case of 
spheroids. However, with virtually no additional effort they may be applied to almost any 
axisymmetric particle, in particular those for which IBI < 1. Thus, the asymptotic results 
of Hinch & Leal (1972) are rendered applicable to such bodies by the simple expedient of 
replacing their particle axis ratio rp by the equivalent axis ratio r e. 

The situation for which Inl > 1 (and P >> 1) requires a different asymptotic analysis, and 
will be discussed in Section 10. All the bodies discussed in Section 3 possess the common 
feature that IBI -< 1, whence most of the important applications lie within the purview of 
the asymptotic analysis which follows. 

The asymptotic solution of [8.191-[8.21] for the case where 

P >> 1 [9.1! 

subdivides naturally into two separate classes: {i) the "weak" Brownian motion case, 
characterized by 

r,, ~, q_ re-3 << p, [9.2i 

and 0il the "'intermediate" case, characterized by 

r3 -~- C 3 >> p >> 1. [9.33 

The "'weak" Brownian motion case 

Asymptotic results for this situation, correct to terms of O(P-~),  are easily abstracted 
from the results of Leal & Hinch, which pertain to the special case of spheroids. In par- 
ticular, the three goniometric factors,* required for use in [8.5]-[8.7], are tabulated by 
Hinch & Leal (1972) and Leal & Hinch (1973) as a function of r e (or B) and P, for the case 
of large P. These numerical values, being derived directly from the general equations 
[8.19]-[8.21] via definitions of the goniometric factors of the form [8.9] and the definition 
of r,, in [2.29], apply to any axisymmetric body for which IB[ < 1. Hence, the applicability 
of Hinch & LeaFs tabulation is not limited to spheroids. 

Their tabulation is reproduced in table 10 for the range 1 < r e < ~ (i.e. 0 ~ B _< 1). 
Comparable results for the range 0 < r~ _< 1 (i.e. - 1  < B < 0) may be obtained from 
these by means of the set of transformations (cf. [8.25]-[8.26]), 

r,, - ,  l/r~ (i.e. B --, -B) ,  

(sin 2 0) ---, (sin 2 0), 

(sin 2 0 cos 205) --, - (sin 2 0 cos 205), 

[9.4a] 

[9.4b] 

[9.4ct 

* In addition, Hinch & Leal (1972) tabulate values of {sin 4 0 sin 2~b), (sin 4 0 sin 2 2~b) and (sin 4 0 sin 4~b:,. 
However, in view of [8.10], these extra goniometrical factors are superfluous. The tabulated values of these 
quantities may, however, be utilized to examine the internal consistency of their tabulation. A few scattered cheeks 
of this nature revealed reasonable internal consistency. 
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Table I0. Numerical values of the-goniometric factorsto O ( P -  ') for the "weak" 

Brownian motion case [9.1]-[9.2] as;a function of the,equivalent axis ratio in the 
r a n g e l ~  r e ~  ~ ( 0 < B <  1).* 

re (sin20> ( s in ' 0  cos 20> P(sin20 sin 20)  

I 0.667 0.0000 0.0000 
1.05 0.663 - 0.0194 0.1159 
2 0.690 -0.2716 2.1653 
3 0.727 -0.4186 4.9557 
4 0.758 -0.5136 8.6551 
5 0.784 - 0.5810 13.302 
7 0.823 -0.6718 25.487 

iO 0.862 -0.7530 51.090 
16 0,905 - 0.8366 128.92 
25 0.936 -0.8918 312.55 
50 0.968 - 0.9388 1244.68 

100 0.986 - 0.9578 4994.81 
oo 1.000 - 1 . 0 0 0 0  ~(l/2)r~ 

* Values of the goniometrical factors in the range 0 < r e < 1 ( - 1 < B < 0) may 
be obtained from these by replacing r e by I/r e and by changing the algebraic signs 
of (sin20 cos 2~b> and P(sin20 sin 24) .  

(sin2 0 sin 2~b> ~ - <sin 2 0 sin 2~b). [9.4d] 

Conf i rmat ion  of the numerical  accuracy of the goniometr ic  factors presented in table 10 
is provided by the numerical  results cited in tables 6a, 6b and 6c. I f  a t tent ion is confined to 

the case where r e lies in the range  ~ > r e > 1, then for P = 60 and 200, say, the inequalit ies 
[9.1] and [9.2] may  be expected to apply  to r e values near  unity, viz., r e = 1, 2, 3 . . . . .  the 

expected er ror  becoming  larger as one proceeds to the larger values of r e. In table 11 we 

Table 11. Comparison of the "exact" and approximate values of the goniometric factors for the "weak" 
Brownian motion case, [9.1] and[9.2]. 

(sin20> - (sin20 cos 24> (sin20 sin 2~> 

"Exact" Approx. Per cent "Exact" Approx. Per cent "Exact" Approx. Per cent 
table 6c table 7 error table 6b table 7 error table 6a table 7 error 

re P = 60 

1 0.667 0.667 0 0 0 0 0 0 0 
2 0.692 0.690 0.3 0.266 0.272 2.3 0.0348 0.0361 3.7 
3 0.725 0.727 0.3 0.396 0.419 5.5 0.0698 0.0826 18.3 
4 0.748 0.758 1.3 0.465 0.514 10 .6  0.0986 0.1443 46.4 

P = 200 

1 - -  - -  - -  0 0 0 0 0 0 

2 - -  - -  ~ 0.2716 0.2716 0.0 0.0108 0.01083 0.0 
3 - -  - -  - -  0.4154 0.4186 0.8 0.0235 0.0248 5.5 
4 - -  - -  - -  0.5021 O.5136 2.1 0.0358 0.0433 21.0 
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list the exact, Scheraga et al. goniometric factors for several values of r e near unity, repro- 
duced from tables 6a, 6b and 6c, as well as the (approximate) asymptotic Hinch & Leal 
factors, derived from table 10. Also listed are the percentage errors incurred by these 
approximate values. 

Agreement between the approximate and exact values is quite good for those values of re 

nearest to unity. As anticipated, the discrepancy increases with increasing re. The reasonable 
agreement at the smaller values of r e strongly supports the inherent accuracy of both the 
Scheraga et al. results and those of Hinch & Leal. Moreover, the quite good agreement at 
P = 200 for the smaller values of r e suggests that the disclaimer by Scheraga et al. about the 
uncertain validity of their results at P = 200 is unduly cautious, at least at these small r e 
values. 

In addition to the values tabulated in table 10, Hinch & Leal (1972) and Leal & Hinch 
(1973) also derive the following asymptotic formulas, valid for re >> 1 (i.e. B --* 1),* 

(sin2 O) 1 1.792 o / l /  = - - -  + , [9.53 
r e ~re l 

(sin 2 0 c 0 s 2 6 5  = - 1  + - -  ,0,24 O(+) + , [9.6] 
re 

fir: ] ot 'l (sin 2 0sin24~5 = P [ 2  + O(1) + /pZ]. 

From [9.2], these asymptotic results apply when 

[9.7] 

p1/3 >> re >> 1. [9,8] 

These analytical relations agree well with the values tabulated in table 10 at the larger 

values of re. 
The analogs of [9.5]-[9.7] for r e << 1 (i.e. B --, - 1) may be obtained from the above via 

the set of transformations [9.4]. These will apply when 

p l / 3  >> r e  1 >> 1. [9.9] 

In conjunction with [8.5]-[8.7], table 10 may be employed to calculate theological 
properties for circumstances in which the inequality [9.2] applies. (See tables 9a and 9b 
for the case of spheroids.) Alternatively, asymptotic analytical expressions for these proper- 

* Leal & Hinch  (1973) also give the next te rm in the a sympto t i c  expans ion  of [9.7] in inverse powers  of P as 
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ties may be derived when the more stringent inequalities [9.8] or [9.9] hold. For example, 
in the case of long thin prolate spheroids (cf. [3.20] and [3.14]), we eventually find from 
[9.5] to [9.7] that* 

IT1] = -41nrplP]  + O , [9.10b] 

[T2] = 41nrp~P] + 0 , [9.10e] 

provided that 

p1/3 >> rp >> 1, [9.11] 

where rp is the particle axis ratio defined in [3.5]. The first and last of these expressions 
accord with the results of Hinch & Leal (1972), with account being taken of the exchange 
o f the" l "  and "2" indices from the notation of their paper (cf. footnote on page 242). However, 
in place of [9.10b] they obtain [TI] = o(r~/ln rp)P- 1. The discrepancy may perhaps stem 
from a possible failure on their part to take account of the asymptotic relation given in the 
footnote on the bottom of this page. 

Note that [9.5]-[9.7] cannot be applied to either the "non-interacting" or "first-order" 
dumbbell (of. [8.15] and [8.16]), since it has been assumed a priori that r e = ~ for such 
bodies (i.e. B = 1). Hence, it becomes impossible to find a Pgclet number sufficiently large 
to satisfy the inequality [9.8]. (See, however, [9.22] and [9.13].) However, the numerical 
result~ tabulated in table 10 may still be employed to calculate the theological properties 
of suspensions of more general dumbbells (of. table 3), when the spheres comprising the 
dumbbell are sufficiently close to admit of strong hydrodynamic interactions. Such results 
apply only at Pgclet numbers large enough to satisfy the inequality [9.2]. 

The "intermediate" case 

For the intermediate case, corresponding to the inequality [9.3], Hinch & Leal (1972) 
have succeeded in obtaining an asymptotic solution valid only for the case where r e >> 1 
(or, equivalently, by means of the transformation [9.4], for the case where r e << 1, e.g. a 
circular disk, for which r e = rp = 0). From [9.3] this occurs when 

re >> pl/3 >> 1. [9.12] 

When this dual constraint is satisfied, the goniometric factors are of the forms 

<sin 2 0) = 1 - p - ~ ,  [9.13a] 

* In the computation of [Tt] it has been noted that the term ( B -  i _ I)  appearing in [8 .6]  is asymptotically 
equal to 2/rZp (cf. [9.19]). 
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(sin 2 0cos2~b) = - 1 + 
b 

p1,3" [9.13b] 

( s i n  2 0 s in  2~b) = p t 3  [9 .13c]  

in which a, b, c are numerical constants, for which Hinch & Leal (1972) and Leal & Hinch 
(1973) give the approximate numerical values* 

a ~ 2. b ~ 4 ,  c ~0 .4 .  [9.14] 

These values are subject to considerable uncertainty. Leal & Hinch (1973) estimate the c 
coefficient to be no more reliable than _+ 30 per cent. However, as is discussed in Appendix F. 
it is possible to employ the analysis of Stewart & Sorensen (1972) to estimate the following 
values for these coefficients: 

a = 0 . 9 7 4 ,  b = 1.796, c = 0.727. [9.15] 

Yet another method, albeit approximate, for estimating these coefficients, due to Schwarz 
(1956), and discussed in Appendix F, yields 

a = ?, b ~  1.22, c ~  0.71. [9.16] 

Of the three different sets of coefficients tabulated, those given in [9.15] are likely to be most 
accurate since the Stewart & Sorensen numerics agree well with those of Scheraga et al. 

in their common domain of validity. 
Some measure of the degree of accuracy of the asymptotic formulas [9.13], with coefficients 

given by [9.15], is furnished by comparison with the exact values of these goniometrical 
factors due to Scheraga et al. in tables 6a, 6b and 6c. It seems reasonable to assume that the 
dual inequality [9.12] is at least approximately satisfied by the values r~ = 50 and P = 60. 
For this value of P, [9.13] and [9.15] combine to yield 

(sin2Ocos2~b) ~ -0.541,  (sin2Osin2~b) ~0.186,  (s in20)  ~0.751.  

These approximate values may be compared with the exact Scheraga et al. values of 
-0.582, 0.176 and 0.799, respectively, tabulated in tables 6a, 6b and 6c, or with the values 
-0.574, 0.172 and 0.797, respectively, tabulated in table 5 for r e = :~'. Discrepancies here 
are of the order of 7 per cent, suggesting that a value of P = 60 is not sufficiently large for 
the asymptotic formulas [9.13] to apply with a high degree of accuracy. This is confirmed 
by the tabulation in table 5, which also reveals the quantitative inadequacies of the asymp- 
totic formulas [9.13], even for P as large as 60. 

* Actually, Hinch & Lea1119721 only directly give the values of a and c. The b value may be obtained indirectly 
by application of [8.10b] (with B = 1) in conjunction with the asymptotic value, ( s in40sin  ~ 2q~) = 2P ~'-~ 
given by Hinch & Leal. 
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Subst i tut ion of the goniometr ica l  factors [9.13] into [8.5]-[8.7] yields 

K 
[r/] = [r/]~ + ~-i7~' [9.17a] 

K t  K2 
[T,] = ~- r~ '  [z2] = p--i-~' [9.17b, c] 

wherein, for c i rcumstances  in which the inequali ty [9.12] holds, 

It/]= = 5(Q~ + Q~) + (5/4)(B -~ - 1)(3Qz + 4Q~), [9.18a] 

K = (5/4)[3(a - b)Q2 - 4bQ~ - b ( B  -~  - I)(3Qz + 4Q~)], [9.18b] 

g ~  = (5 /4 )c [4Q~ + ( B - ~  - 1)(3Q2 + 4Q~)], [9.18c] 

g 2 = - ( 5 / 4 ) c [ 6 Q 2  + 4Q°3 + ( B  -~  - 1)(3Q2 + 4Q~)], [9.18d] 

are, in general, functions only of re. 
Despi te  the fact that  B --, 1 as r e ~ ~ ,  one must  generally refrain f rom put t ing B -  l _ I = 0 

in these expressions. Rather,  since 

2 2 
B -  1 - 1 = r--~--i-1 ,-- ~ for re >> 1, [9.19] 

the question of whether  or  not  to put  B = 1 in these equat ions  depends  critically upon  the 
manner  in which the mater ia l  constants  Q~, Q2 and Qg vary with re for large a rguments  r e. 
For  example,  in the case o f"non- in te rac t ing"  dumbbells ,  it follows f rom [3.73] (being careful 
in passage to the limit h = 0), in conjunct ion with the values of  a, b, c tabula ted  in [9.15], 

that* 

[t/] = 0 . 9 2 4 r 2 p  - 1/3, [9.20a] 

[zl] = O ( h r 2 p  -4/3) ,  [9.20b] 

[z2] = 1.635r2p-1/3 [9.20c] 

These results agree exactly with those of  Stewart  & Sorensen (1972), as may  be verified by 
setting h = 0 in [8.15] and [F.1]. 

F r o m  [3.73g] and [3.71] we have that  to terms of  dominan t  order  in the interaction 
pa rame te r  h, 

13~1/213~ I re= I~ I l~lh- . [9.21] 

* It might appear from a comparison between [9.20a] and [9.17a] that [r/]~ = 0. Actually this is not the case, 
since for the "non-interacting" dumbbell one finds from [9.18a] that 

[7]® = 5/2. 

This term. however, being of O{1) with respect to the parameter rp, is negligible compared with the term of order 
rp {rp/P l/a) appearing on the right-hand side of [9.20a]. This follows from the facts that r~/P ~/3 >> 1 and rp >> 1 
(cf. [9.12] and [3.73g]). 
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Hence, the inequality [9.12], required for the validity of [9.20], necessitates that 

h -  l >> p1,3 >> I. [9.22] 

For any (large) specified value of P, this inequality can always be satisfied by choosing rp 
sufficiently large, thereby making h sufficiently small. 

In the case of a tong thin prolate spheroid (cf. [3.20]), [9.18] becomes, asymptotically, 

[r/]~: = 2, K = (b - a)r2/41nrt,, K 1 = - c / l n rp ,  K 2 = cr2/21nrp. 

Insertion of these into [9.17], with use of Leal and Hinch's values for the constants a. h, c, 
given in [9.14],* yields 

[r/] = (0.5r2/ln %)P- ~ 3  

[rl] = -(0.4/ln rp)P-1.3 

IT2] -- (0.2rZ/ln rp)P-'  3. 

[9.23a] 

[9.23b] 

[9.23c] 

The value [r/]~o = 2, being of O(1) with respect to the large parameter rp, has been neglected 
in obtaining [9.23a]. In view of the inequality [9.12] (with re = rp for the spheroid), such a 
term of order unity is negligible compared with the term of order (%/ln rp)(rp/P t/a) appearing 
explicitly on the right-hand side of [9.23a]. 

Equations [9.23] agree with the original spheroid results of Hinch & Leal (1972) for the 
"intermediate" case (cf. footnote on page 242 for minor notational differences), except that 
they give [T1] = o(1)(r2/ln rp)P- 1/3 in place of [9.23b]. Their error here is likely due to the 
same source as that discussed in connection with [9.10b], namely their probable use of the 
relation B-1 _ 1 = 0, rather than the correct relation indicated in [9.19] for r e >> 1. In 
both cases their expressions for [rl] are too large by a factor of r 2. 

10. S I M P L E  S H E A R  F L O W .  L A R G E  PI~CLET N U M B E R S .  [BI > 1. 

From [8.21] the equations governing rotation of an axisymmetric body suspended in 
the simple shear flow [8.1] are 

0 = ¼B6 sin 20 sin 2q5, [10.1] 

and 

= ½G(1 + Bcos 2~b). [10.2] 

In addition, as readily follows from [3.3], the body rotates about its symmetry axis with an 
angular velocity 

~'~e = I G  COS 0, [10.3] 

where l) e = 1"~. e. 

* The a, b and c values given in [9.15] are presumably more accurate than those of Hinch & Leal. We have 
merely used the latter's values for the purpose of comparing [9.23] with the original calculations of Hinch & Leal 

[1972). 
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For IBI < 1, [10.1] and [10.2] reveal that in the absence of rotary diffusion the body 
undergoes a time-periodic rotation of the type first described by Jeffery (1922). In contrast, 
when IBI > 1 the body undergoes an aperiodic motion, ultimately adopting a stable ter- 
minal orientation (0% ~b®), characterized by 

0 ~ = 0 ,  6 ° = 0 .  [10.43 

This terminal orientation is easily calculated by putting [10.1] and [10.2] equal to zero, and 
determining, by means of a linear stability analysis (Brenner 1972c) which roots (0". ~b ~) 
of the resulting equations are stable to small perturbations in orientation. Alternatively, 
one can integrate [10.1] and [10.2] and pass to the limit as t --, oo (Bretherton 1962, Brenner 
1972c). 

For B > 1 the stable orientation is found to be 

0 ~° = n / 2 ,  tan ~b ~ = r e, [10.5a, b] 

where r e is the quantity defined by [2.31]. As B varies from 1 to m, r e varies from oc to 1. 
Thus, in its stable terminal state, the particle lies in the x 1 - x2 plane, and there its sym- 
metry axis makes a positive angle ~b ~ with the x I axis, lying either in the range 

n/2 _> ~b ~ _> =/4, [10.6a] 

o r  

~/2 _> 4, ~ - ~/2  >_ ~/4,  [lO.6b] 

S f - - -  

~, 'X • 

\ 
\ 

Figure 13. Terminal orientation of an axisymmetric body characterized by B > I when suspended 
in a simple shear flow. 
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as in figure 13. Depending upon the specified r e value, these stable orientations tie some- 
where within the shaded regions shown in figure 13. These two different stable orientations 
merely correspond to the two opposite ends of the symmetry axis of the body. When one 
end points in the direction given by [10.6a] the other end points in the opposite direction, 
given by [lO.6b]. From [5.5] these orientations correspond to 

in which either 

o r  

e r~ = i 1 c o s  <b~' + i 2 s i n  <b~, [~ o.71] 

l r e 

c o s  <b . . . .  . ( r "  2 + 1 ) , .  2 . . (r,7 q- l} 1 '2 '  sin <b~ = . F10.Saq 

1 r,. 
COS(/) ~ * -  (r2 + 1) 12  I I 0 ' S b i  (r,2 + 1)1- ~, sin<b* = 

The former corresponds to that end lying in the first quadrant, and the latter to the opposite 
end, lying in the third quadrant. 

For B _< - 1  the stable terminal orientation is (Brenner 1972c) 

0 ~ = =/2, t a n 0  ~ = -J;,, [10.9a, b] 

with r e defined as in [2.31]. As B varies from - 1 to - 7 _ ,  r e varies from 0 to 1. Again. the 
particle lies in the x I - x2 plane, as in figure 14, and there makes a positive angle <b* with 
the xl axis, lying either in the range 

3~/4 _> <b~ >_ =/2, [lO.lOa] 

o r  

3~'4 >_> <b'~' - =/2 >- =/2. [lO. lOb] 

N 

.,1" 2 

df~ 

Figure  14. Te rmina l  or ien ta t ion  of an  ax i symmet r i c  body charac ter ized  by B < - 1 when  suspended  
in a s imple  shear  flow, 
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In [10.7] this stable orientation corresponds either to 

1 r e 
cos~b ~ = - ( r  ) + 1) ~/2' s in~  ~ = ir,2 + 1) '2"  

o r  

273 

[10.1 la] 

1 r,, 
cosq~:" = , [r~ + 1) L'2 [10.lib] l i e  q- 1)l, 2, sin ~b ~: = - 

Since the suspended particles in a dilute suspension for which IBI > 1 adopt preferred 
terminal orientations in the absence of rotary Brownian motion, the orientational distri- 
bution function for this case is the Dirac delta function distribution 

.fle) = II/2)[,~(e + e ~) + 6(e - e~)], [10.123 

there being no distinction between the directions _ e ~.  Consequently, in the limit where 
P =  G/D, ~ 7:. 

( ee )  = e~e ~, [10.13] 

and thus 

(sin 2 O) = sin 2 0 ~ - 1, [10.14a]  

( s i n  z 0 sin 2 ~ )  = s in  2 0 ~ s in  2 ~  ~ = B - ~ ( B  2 - 1p ;2, [10 .14b]  

( s i n  2 0 cos  2 ~ )  = s in  2 0 ~ cos  2 ~  ~ = - B -  ~, [10.14c] 

valid for both B _> 1 and B < - 1 (cf. [9.4]). These goniometric factors may be employed in 
[8.5] to [8.7] to calculate rheological properties in simple shear for the case where [BI > 1, 
provided that rotary Brownian motion is negligible. 

Effects of  weak Brownian motion 

To incorporate the effects of small rotary Brownian movement into the analysis we 
follow the general methods of Hinch (I 971). In the absence of Brownian motion the general 
mechanical equations of motion of an axisymmetric particle are (Brenner & Condiff 1974) 

in which H is the dyadic 

6 = {I - ee).H.e, [10.15] 

H = A + BS, [10.16] 

and ~ = de/dt is thc time rate of change of the orientation of the symmetry axis of the 
particle as measured by an observer fixed in space. 

In the particular case of the simple shear flow [8.1], equation [ 10.15] is equivalent to [ 10.1] 
and [10.2]. However, in the interests of generality, we shall refrain for the time being from 
introducing particular values of A and S. 
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When Brownian  mo t ion  is absent  the s ta t ionary  or ien ta t ions  of  the particle e ~ (and - e ~) 
are defined by the condi t ion that  

+~o = 0. [10.17] 

Hence,  f rom [10.15], e ~ may  be ob ta ined  from the relat ion 

(I - e ~ e ~ ) . H . e  ~ = 0 .  [10.18] 

Since I - e~°e ~ is an annihi la tor  for all vectors  parallel  to e ~, it follows that  the general 

solution of  [10.18] cor responds  to the requi rement  that  the vector  H .  e ~ lie parallel  to e ~, 
i.e. 

H . e  ~ = he w . [10.19] 

Equivalently,  

(H - lh ) .  e ~° = 0. [10.20] 

The  scalar h is therefore an eigenvalue of H, and e °° is the cor responding  eigenvector.  For  

[10.203 to possess a nontr ivial  solution, h must  be a solut ion of the characterist ic  equat ion 

det (H - lh) = 0. [10.21] 

For  specified values of A, S and B this represents,  in general, a cubic equat ion in h, possessing 
three roots. These roots  may  either all be real, or else one root  m a y  be real with the other  

two complex  conjugates.  

In the case of the simple shear flow [8.1], 

H = ½ B G ( i l i  2 + i 2 i l )  + ½ G ( i z i  I - i z i2 ) .  [10.22] 

The three eigenvectors  are readily found to be 

h I = H, h 2 = - H ,  h 3 = 0 ,  [10.23] 

in which 

H =  ½G(B 2 - 1) 1'2 [10.24] 

Sta t ionary  states are possible only when H is real. This  occurs  only when IBI > 1. When  

IBI < 1, H is purely complex,  and no s ta t ionary  states are possible, at least for the case of 
simple shear flow. 

Fol lowing [5.5] the eigenvectors e] ~ and e~ appropr i a t e  to h I and h 2, respectively, may  
be writ ten generally as 

e ;  = (i 1 cos q ~  + i2 sin q~ )  sin 07 + i 3 COS 0 7 (j = 1, 2), [10.25] 

The  eigenvector  e~ ° is indeterminate  and irrelevant in view of the two-dimens ional  na ture  
of  H for a s imple shear flow. In t roduc t ion  of [10.22]-[10.25] into [10.19] shows that  

O~ = O~ = ~/2 = 0 ~,  say, [10.26] 
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and 

whence [10.25] may be written as 

tan ~ = re sgn B, [10.27] 

tan ~b~ = - r~ s g n  B,  [ 1 0 . 2 8 ]  

e~ = i t COS ~b~ + i 2 sin ~b~. [10.29] 

To  ascertain which, if either, of the two normal ized eigenvectors eT and e~ represents a 
stable s tat ionary state we perform a linearized stability analysis. Write 

e = e ~ + A, [10.30] 

in which A << 1, where A = IAI. Here, the vector A represents a small per turbat ion  about  the 
stat ionary state e ~. For  convenience we have temporar i ly  d ropped  the subscript j on e ~ 

and A. Set 

A = 4, + A~, 

wherein ~, and A L lie parallel and perpendicular,  respectively, to e ~. Since e .  e = e ~ ' e ~ = 1, 
we find upon dot  multiplication of  [10.30] by itself that  e °~ • A = O(A2). Alternatively, since 

e ®. A± = 0, then C ° .  z~, = O ( ~  + A~.), where z~, and A l are the magnitudes of the cor- 
responding vectors. Inasmuch as e ~ and 4) are colinear and [C°[ = 1, then e ~ • h~, = ~ , .  
Thereby we obtain 4,  = O(A~). In consequence ofthis,  only per turbat ions  lying in the plane 
perpendicular  to e °~ need be considered in the linearized per turbat ion  analysis. Thus, 
[10.30] may be replaced by 

e = e ~ + A l + O ( A 2 ) ,  [10.31] 

wherein 

e ~. A_L = O. [10.32] 

Substi tut ion of [10.31] into [10.15], with use of [10.17]-[10.20] and [10.32], ult imately 
yields 

A± = A .  A 1 + O(A2), [10.33] 

where A is the dyadic* 

A = (I - e~e®). H - (I - e~e~°)h. [10,34] 

* In view of [10.32], equation [10.33] could also be written as 

in which 

A' = ( !  - e®e®) -.  H - 'h 

is a complete (i.e. thr~-dimensional) dyadic. 

J,M.F., Vol, I, No. 2 F 
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It readily follows from [10.18] along with e ~' . e  ~' = 1 that 

A . e  ~ = 0  and e ~ ' . A  = 0 ,  [10.35] 

so that A is a planar (i.e. two-dimensional)  dyadic whose componen t s  lie entirely in the 

plane perpendicular  to e ~'. 

As a solution of the linearized equat ion [10.33] we try 

A l = cae  At, [10.36] 

where c is a constant  scalar and a is a constant  unit vector lying in the plane perpendicular  

to e ~. Substi tution into [10.33] yields 

A . a  = Aa, [10.37] 

i.e. 

(A - l i A ) .  a = 0, [10.38] 

where l i  = I - e~e ~ is the two-dimensional  idemfactor for vectors lying in a plane perpen- 

dicular to e ~. For  [10.38] to possess a nontrivial  solution it is required that 

de t (A  - I±A) = 0, [10.39] 

whence the roots  A 1 and A 2 of  this quadra t ic  equat ion are the two eigenvalues of the planar 

dyadic A, and the (unit) vectors al and a 2 are its eigenvectors. The eigenvatues are either 

both real (as is always true when A is symmetric) or  else they are complex conjugates. By 

linear superposit ion, the general solution of  [10.33] may be written as 

A l = c t a l  eA' '  + c z a z e  A:', [10.40] 

where the constants  ct and c2 are determined by the initial conditions. Stability of the 
stat ionary state requires that the real parts of A~ and A~ be negative. Necessary and suf- 

ficient condit ions for this to be so are 

t r A  < 0 and d e t A  > 0. [10.41] 

In the special case where A is symmetric,  stability simply requires that 

A1 < 0 and A2 < 0 .  [10.42] 

In order  to obtain an explicit formula for A for the simple shear flow case, it is convenient  

to introduce .a r ight-handed system of mutual ly  perpendicular  unit vectors (a~, a 2, a3): 

a 1 = i3, a 2 = e ~ × i3, a 3 = e ~. [10.43] 

Here, i 3 is the unit vector parallel to the vorticity vector of the simple shear flow [8.1 ], and e "  

is given by [10.29] for this flow. The unit vectors a~ and a 2 lie in the plane perpendicular  to 

e% With use of [10.29] it follows from [10.43] that 

a 2 = i 1 sin q~  - i 2 cos c~[,  [10.44a3 

a 3 = i 1 cos qSj ~ + i 2 sin qS~, [10.44b] 
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or, solving these for il and i 2, 

il = as sin ~ + a3 cos ~ ,  

12 ----- - -  a2 COS ~ + a 3 sin ~ : .  

In the present system, 

I - e T C  = a al + a 2 a 2 .  

From [10.22] to [10.24], [10.45], [10.46] and [10.34] follows 

A t = - H a t a  t - 2Ha2a2, 

and 

A2 = Hala~ + 2Ha2a2, 

in which we have used the relations 

and 

B + I  
t a n 2 ~  = B -  1 ( j =  1,2), 

1 
c o s  = ( j  = 1, 2),  

Bsin2~b] ° = (B z - 1) 1/2, Bsin 2~b~ ° = - ( B  2 - 1) 1/2, 

[10.45a] 

[10.45b] 

[10.46] 

[10.47a] 

[10.47b] 

This result accords with [10.5] for B _> 1 and [10.9] for B -< - 1. 
In summary, the stable terminal orientation C ° for the simple shear flow [8.1] is given by 

[10.7] where $~o is the value defined by [10.49] (or by [10.5b] for B >_ 1 and [10.9b] for 
B _< -1) .  For this stable state the A value is given by [10.48], in which 

A1 = - H ,  A 2 = - 2 H .  [10.50] 

When rotary Brownian motion is sensible the orientational distribution function satisfies 
the differential equation 

+ ~ - ~  [10.51] 0-7 ~ "  (~f) = O, de de' 

derived from [10.27] and [10.28]. Since A is symmetric in both cases, it may be written in 
terms of its normalized eigenvectors and eigenvalues as 

A = alalA1 + a2a2A 2. [10.48] 

Comparison with [10.47] shows that the stability criterion [10.42] is satisfied only by A 1. 
Hence, we conclude that only e] ° is stable, whence it follows from [10.26] and [10.27] that 
the stable orientation is 

0 ° = n / 2 ,  tan ~b °° = r e sgn B. [10.49] 
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subject to the normalization condition 

f f d 2 e  = 1, [10.52! 

with e given generally by [10.15]. For Dr = 0 the solution of this differential equation is the 
delta function distribution [10.12], in which e ~ is the stable terminal orientation. 

When the Brown±an motion is weak, but nonzero, it may be regarded as a small pertur- 
bation about the terminal state e ~. Hence, from [10.31] and [10.177 we have that 

= A± = A 'A ±  [10.53i 

to terms of lowest order in the small perturbation A. Furthermore, from [10.31], Pe = ?A 
since e ~ is a constant. At steady state the distribution function for the case of weak Brown±an 
motion thereby satisfies the differential equation 

? ~21 
- - . ( A -  A l . f )  = D r [10 .54]  
?A~ PAL " PAl 

locally. This equation can be written as 

? 

i;A  : o, 

in which 

j~ = -D~ + A . A l f  

r10.55i i 

[10.56] 

K - ~ e x p ( - A l  " C ' A l )  d2e, [lO.6O? 

is the rotary perturbation flux (Brenner & Condiff 1974). 
When A is symmetric, such as is true for the case of a simple shear flow, these relations 

admit of the solution 

h = o. I10.57; 

corresponding to a balance between the rotary diffusive and convective fluxes (Brenner & 
Condiff 1974). Integration of [10.56] then yields the multivariate Gauss±an distribution 

f = K - t  e x p ( - A i . C . A ± ) ,  [10.58] 

in which C is the symmetric dyadic 

C = - A / 2 D  r ,  [10.59; 

and K = K(C) is the normalization constant 
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deriving from [10.52].* This constant is evaluated in Appendix H, with the result that 

K = 2n(det C)-  1/2. [10.61] 

Independently of whether or not A is symmetric, C is a symmetric planar dyadic* lying 
in the plane normal to • ~. It therefore satisfies 

e ® . C  = C . e  ® = 0. 

In consequence of this, and the fact that A j_ = e - e °~, [10.58] may be written in the invariant 

form 

f(e) = ~ (det C) 1/2 exp ( - e .  C .  e). [ 10.62] 

In the simple shear flow case it follows from [10.48], [10.59], [10.50] and [10.24] that 

C = a l a i C  1 + a2azC2, [10.63] 

in which 

where 

with 

= ¼A, = ½A, [lO.64] 

A = P ( B  2 - 1) 1/2 >> 1, [10.65] 

P = G/D,  [10.66] 

the rotary P6clet number. According to the unsteady solution of [10.1] and [10.2] for 
IB[ > 1 (Bretherton 1962, Brenner 1972c), the hydrodynamic relaxation time zn for 
approach to the terminal orientation is (cf. [10.40], [10.50] and [10.24]) 

2 
z n = G(B2  _ 1)1/2. [10.67] 

On the other hand, the diffusional relaxation time zo is 

za = 6/0,. [10.68] 

* In the more general case where A is not symmetrical the solution is still of the form [10.58] (with C sym- 
metrical), but C is no longer given by [10.59]. This planar dyadic may be determined by substitution of [I 0.58] into 
[10.54]. yielding 

o . ( C - t . A  ) + A . C - I  + 4 D ,  l ± ) . v =  tr(A + 2D, C), 

in which v = C • A j_ and l± is the two-dimensional idemfactor. ! - e*e  ~. in order that this relation may apply 
for an arbitrary value of A L we require that C satisfy 

C - t . A *  + A . C - I  + 4 D ,  IL = 0 ,  tr(A + 2D, C)---0,  

in agreement with Hinch (1971), The latter condition is automatically implied by the former. The normalization 
constant in [10.60] applies whether or not A is symmetric, though it is incorr~tly stated in Hinch's(1971} thesis 
with Met C)-  ' appearing in place of Met C)-  t/2. 
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Consequently, the parameter 

f ( d ,  4,) - 

w h e r e ,  from [10.49], 

A -  1 rD 
I 0.69~ 

3 ~7 H • 

is the ratio of relaxation times for the rotary diffusion and convection. 

With use of [5.5t and [10.44] (upon deleting the subscript j from the lattert, equation 
[10.62] adopts the form 

A 
4rrxf2 exp [-¼A{ c°s20 + 2 sin2 0sin2 (4, - 4,~)~,1, FI0 70] 

tan 11B +111"2 4,~ = (sgn B) - 1 ~ - ~ ]  I10.71~ 

In the limit where A --* oc, this distribution goes to zero for all (0, 4,) except at the critical 
orientation, 0 = 0 ~ -  - rt/2, 4, = 4,::. This is consistent with the Dirac delta function 
character of the distribution [10.12] in the limit where the Brownian motion is negligible. 

A general expression for the second orientational moment ( e e )  required in the rheo- 
logical calculations is derived in Appendix H, the result being 

(ee> = [1 - ½ t r ( C - ' ) ] e ~ e  ~ + I C - I  [10.723 

valid in the limit of small rotary Brownian movement.* For the simple shear flow [8.1! 
this gives 

( ee )  = (1 - 3A-1)e~e ~ + 2A- l (2a la l  + a2a2). [10.73] 

This relation gives the first-order correction to [10.13] arising from the Brownian rota- 
tion. It can be written out in the fix, i2, i3) system appropriate to the simple shear flow 
[8.1] by use of [10.73, [10.44] (upon deleting the affix j), and [10.491. In this manner it follows 
that 

(sin 2 0 )  = ( i l i  1 + i2i2):(ee ) = 1 - 2A -1, [10.74ai 

(sin 2 0sin 24,) = (ili2 + i2 i l ) : (ee)  = B-I (B  2 - 1)t/2(1 - 4A-1). [10.74bl 

and 

(sin 20cos24 , )  = ( i l i l  - i 2 i 2 ) : ( e e )  = - B - l ( 1  - 4A 1L [10.74c] 

These represent the O(A-~) corrections to [10.14]. They apply for both B > 1 and 
B < - 1. Equations [10.74j may be utilized in [8.51-[8.73 to  determine rheological properties 
for tBI > 1 to terms of the first order in Dr. 

* Equa t ion  [10.72] holds  in general ,  even if A is not  symmetr ic ,  since a 1 , a 2, C l and  C 2 may also be in terpre ted  
as being the pr inc ipal  axes  and pr inc ipal  values,  respectively,  of the symmet r i c  p lanar  dyadic  C. 
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I1. GENERAL TWO-DIMENSIONAL HOMOGENEOUS SHEARING FLOWS 

Sections 8-10 have furnished a detailed analysis of the rheological properties of dilute 
suspensions of axisymmetric Brownian particles undergoing simple shear. We will demon- 
strate in this section, by a simple reinterpretation of various parameters, that these simple 
shear results can be applied to general, two-dimensional, homogeneous shearing flows. In 
particular it will be shown in ter  alia that the results of Scheraga et al. (1951, 1955) giving 
numerical values for the orientational distribution function, and the various moments 
thereof, may be employed for any two-dimensional flow, by reassigning a different interpre- 
tation to the parameters B (or re) and G upon which the distribution function f depends. 
This same reinterpretation enables us to carry over the asymptotic, large P6clet number 
analyses of Sections 9 and 10 to these more general flows. 

Let (x'~, x'2, x'a) represent an arbitrary system of rectangular Cartesian coordinates fixed 
in space, and consider the general incompressible two-dimensional flow 

u = i' 1 u' l(x '  1 , x'2) + i~u~(x' 1 , x~), [11.1] 

,~u'~ Ou~ 
Ox'~ + Ox---~2 = 0, [11.2] 

taking place in the x'~ -: x~ plane. Here, (i'1, i~, i~) are a right-handed triad of mutually 
perpendicular unit vectors. Since 

oJ = ½V × u, [11.3] 

then for this flow, 

in which 

,p 
ta = 13o~, [11.4] 

eu'l I 
o~ = 2~0x'1 t3x'2l [11.5] 

The flow is thus characterized by an angular velocity vector possessing only a component 
normal to the plane of shear. 

The components of the rate of strain dyadic S in this arbitrary system are 

Sjk = i~,ij:S. [1 1.6] 

In consequence of the incompressibility condition S' u = 0 and the symmetry condition 
Sjk = S ~ ,  these components satisfy 

S~ 1 + S[2 = O, [11.7] 

and 

s~2 = s~1, [11.8] 
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all other strain rate components being zero. Hence, the most general two-dimensional rate 
of strain dyadic may be written as 

with 

S = (i '~i i - i~il)S'~ + ( i l i ~  + i l i l ) S i 2 ,  [11.97 

?~u' 1 l[~,u' 1 ~u'zl. 
S11 - ~ S12 -~- 5 1 ~ x ,  2 + (~X,l] [ll.lOa, bi 

Any two-dimensional linear shear flow will therefore be of the form 

u] = S ; l x ;  + iS;2 - m)xh ,  [ l l . l l a i  

U2 = (S12 + (.o)x; - S11x2,  [11.1 lbi 

u~ = 0. [ l l . l l c ]  

The hydrodynamic properties of such a flow can thus be characterized generally by the 
three independent scalar parameters S'11, S'12 and co. 

Rather than describing the flow in terms of the arbitrary system (x'l, x~, x~) it is con- 
venient to refer the motion to a coordinate system composed of the principal axes of S and 
the direction of the fluid angular velocity vector to. Since S is symmetric, traceless and 
planar, it can be expressed in terms of its principal axes as 

S = (6161 --  6 2 6 2 ) S ,  

in which 

s = 1½s:s l  ' '~ _= Is ;5  + s',511,2 

Here, 61 and 62 are the eigenvectors of S, normalized to unity, and defined by 

Ill.121 

[11.13] 

with 

and 

S , 6 1  = S 1 6 1 ,  S , 6 2  = S 2 6 2 ,  [ll.14a, b] 

I~,1 = ]~21 = 1, ~11.15] 

S 1 = S, 82 = - S ,  [ll.16a, b] 

the eigenvalues of S. The "1" and "2" directions correspond, respectively, to the principal 
axes of tension and compression. 

Since S is symmetric, these unit vectors are mutually perpendicular and lie in the X'l - x) 
plane. Together with i; they form a right-handed system of mutually perpendicular unit 
vectors (61,62, ~3), with 

/~3 - i ;  E l i . 1 7 ?  
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Figure 15. Orientation of the principal axes of shear of an arbitrary two-dimensional shear fl0w. 

As in figure 15, let p denote the angle required to bring the i] axis into coincidence with 
the 61 axis via a rotation about the 63 axis. Since equations [11.!4] are invariant under the 
transformations &l ~ -&l  and 82 ~ - 6 2  we may (arbitrarily) define the direction o f  the 
61 axis such that/~ lies in the range 

- n / 2  < ~ < n/2. [11.18] 

Having chosen/~ in this manner the direction of 62 is then uniquely determined by the 
requirement that (61,62, 63), in that order, form a right-handed system. 

I t  follows that 

~I = i'1 cos fl + it sin fl, [11.19a] 

62 = - i'1 sin fl + it cos 13. [ll.19b] 

In conjunction with [11.9] and [11.12] these show that the angle fl is determined by the 
relations 

cos 2fl = S'11/S, sin 2fl = S'12/S. [11.20a, b] 

Considered jointly with [10.26] these relations serve to establish whether &z lies in the first 
or fourth quadrant of the X'l - x~ system. 

Since A = - 8 .  oJ (i.e. Ais = -e~SkCOk) then [11.4] shows that in the principal axis system, 

A = (~z&1 - {JllJ2) O-). [11.21] 

Hence, from this and [11.12] the dyadic H defined in [10.16] may be written in the principal 
axis system as 

H ~-- (1~I~i - ~21$2)BS --I-(~2~i - ~i~2)(.0. [11.22] 
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x 3 

Xl d ~ ~ ? 
Figure 16. Orientation of the Cartesian axes x~ and x 2 for a general two-dimensional shear flow 

relative to the principal axes of shear. 

Now, as in figure 16, rotate the axes (61,62) about the 63 axis through a positive angle 
of 135 ° to form a new system of axes (xl, x2) lying in the (x'~, x'2) plane perpendicular to 
the vorticity vector. Thus, 

61 = - - 2 - 1 / 2 ( i  I + i2), [11.23a] 

[11.23b] 62 = 2-I/2(i~ - i2), 

where (it, i2, i3) are a right-handed triad of mutually perpendicular unit vectors along the 
coordinate axes (xl, x2, xa), where x3 - x~ and 

i3 = i3 -= 6 3 .  [ 1 1 . 2 4 ]  

In the new system it follows from [11.12] and [11.21] that 

S = ( i l i  2 + i 2 i l ) S ,  [ 1 1 . 2 5 ]  

and 

A = ( i2 i  I - i l i 2 ) c o ,  

where, in the unpr i r~d system (cf. [11.5], [11.10] and [11.13]), 

s = t ½ s : s W  ~ = ts~,  + s ~ )  ~'~, 

1-1 -u2 ou, s,, ll°u' 
co = 2 1 O x  ' Ox21' S l l  = (~X 1 " : 2 1 ~ X 2  

with 

U = i l U l ( X l , X 2 )  + i 2 u 2 ( X l , X 2 ) ,  

[11.26] 

+ 

[ 11.27] 

~xl]" [11.28a, b, c] 

[ 11.29] 

and 

tO = i309. [ 1 1.30]  
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Equations [11.25] and [11..26] combine to yield 

H = ½B'~G*( i l i2  + i 2 i l ) +  ½G*( i2 i l  - i t i2 ) ,  [11.31] 

wherein we have introduced two quantities. G* and B*. defined in terms of the specified 
parameters co, B and S as* 

G* = 2co, [11.32] 

B* = BS/co, [11.33] 

provided that co # 0. 
As a special case of this general two-dimensional flow consider the simple shear flow [8.1] 

taking place with respect to the (xt, x2, x3) system. For such a flow we have from [ 11.28] that 

Stl = 0, St2 = co = ½G, [ll.34a, b] 

whence, from [11.27], 

S XG, [ 11.35] 2 

since we are supposing that G > 0. Under these circumstances, [11.32] and [11.33] give 

G * =  G, B* = B ,  [ll.36a, b] 

whereupon [11.31] becomes 

H = ½BG(iti 2 + i 2 i t )  + ½G(i2i t - ili2), [11.37] 

in agreement with [10.22] for a simple shear flow. 
Since the rotary velocity ~ is given generally by [11.15] for any homogeneous shear flow, 

comparison of [11.31] with [11.37] shows that any linear, homogeneous, two-dimensional 
flow (for which co # 0), characterized by the flow parameters co and S, in which are suspended 
identical axisymmetric particles characterized by the parameter B, can be put into a one-to- 
one correspondence with a simple shear flow characterized by the velocity gradient G* in 
which are suspended axisymmetric particles characterized by the parameter B*. By "one-to- 
one" correspondence here we mean either insofar as rotation of an isolated body in the 
absence of Brownian motion is concerned, or insofar as the orientational distribution 
function is concerned. This follows from [10.51] and [10.52], which showthat two bodies 
possessing the same ~ vector for a specified orientation e (and the same D,) necessarily 
possess the same distribution function. Stated explicitly, if f(0, 0; B*, P* = G*/D,) repre- 
sents the orientational distribution function for a simple shear flow characterized by the 
parameters B* and P*, then for the same orientation (0, 0) (relative to the x 1, x2, x 3 
system),falso represents the distribution function for a two-dimensional flow characterized 
by the parameters B, S and co, provided that G* and B* are defined as in [11.32] and [I 1.33]. 

* Since we wish to have G* > 0 it is necessary to arrange matters such that a~ > 0. This can always be done by 
choosing the|~ -~ i3 direction in [11.4] or [i 1.303 such that i3 • oJ > 0. In turn. this can be done by a proper choice 
of the "1" and "2" directions, such that the right-handedness of the coordinates is maintained in the order I, 2, 3. 



286 H O W A R D  B R E N N E R  

That this is the case can perhaps be seen more  explicitly as follows. Let angles tO, 4)) be 

defined relative to the (xt, x 2, x31 system as in figure 6. With e -= i, a unit radial vector in 
spherical-polar coordinates  (Brenner & Condiff  1974) it is readily shown that 

de 
6 ~ dt - i°O + i e s in ( t~ .  [11.38] 

in which (i,, io, i,) denote unit vectors in the (r, 0, 40 system. Use of the idemfactor in the 

form I = i,i~ + ioio + ioi, ,  in conjunct ion with [10.15], yields 

id) + i ,  sin 0 ~ = (ioio + ioi,) • H .  i r. 

Equat ing componen t s  gives, in general, 

1 
0 = Hot,  • = s ~ n o H , , ,  [11.39] 

wherein 

Use of the relations 

H~a = i~ia:H. [11.40] 

ir = i l  s i n 0 c o s  $ + i2 s i n 0 s i n O  + i3 cos0,  [ l l .41a]  

io = it cos 0 cos 4) + i 2 cos 0 sin ~b - i 3 sin 0, 

i , =  - i l s i n $ + i  2 c o s $ ,  

[11.41b] 

[11.41c] 

connect ing the spherical and Cartesian unit vectors, in conjunct ion with [11.31], gives 

rise to the relations* 

~} = ¼ B ' G *  sin 20 sin 2~, [ 11.42] 

= ½G*(1 + B * c o s 2 $ t .  [11.43] 

These are equivalent to Jeffery's (1922) equat ions for a body of revolution suspended in a 

simple shear flow (cf. [10.1] and [10.2]). 

It follows that the various moments  of the distr ibution relative to the (x t , x 2 , x3) system, 
e.g., (s in  2 0), (s in 2 0 sin 2~b) and (s in  2 0 cos 2~b), are formally equivalent in the two cases. 

* In addition, it is readily demonstrated from [3.3] that for a general two-dimensional linear flow the com- 
ponent, f/~ ~ • • fL of the angular angular velocity vector fl for rotation of the body about its symmetry axis is 
given generally by the expression 

f2,~ = e "  tO = ~O COS 0 .  

Use of [11.32] gives 

~,, = ½G* cos 0, 

which is the same result as for a simple shear flow at shear rate G* (cf. [10.3]L Hence, the complete angular velocity 
vectors fl are identical in the two cases. 
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The utility of the general theorem of this section resides in the fact that it permits one to 
utilize the known distribution function results (including the various moments required in 
rheological and streaming birefringence calculations) given in Sections 8, 9 and 10 to 
calculate the comparable results for any two-dimensional linear shear flow. In these expres- 
sions for the moments one has only to replace B and G by B* =-- BS/co and G* -= 2co, 
respectively. Of course, one must also replace the derived parameters P = G/D,, 

)~ = BG/D, and A = G(B 2 - 1)~/:/D, appearing in these sections by the comparable 
parameters 

P* = G*/D, = 2co~D,, [11.44] 

:~* = B*G*/D, =- 2BS/D,. [l 1.45] 

A* = G*(B .2 - i)1/2/1), =-- 2(B2S 2 - c 0 2 ) l / 2 / D r .  [11.46] 

Similarly, re appearing in the appropriate calculations in Sections 8, 9 and l0 pertaining to 
the distribution function and its moments must be replaced by r*, defined as 

[ I + B*I J/2 
r* = l]--2-~j (IB*l < 1), [11.47] 

o r  

B* + l/X/2 
¢ -- ~ _ f !  tIB*l > 1). [11.48] 

Of special interest is the fact that the extensive tables in Section 8, derived from the 
tabulations of Scheraga et al. (1951, 1955) and Stewart & Sorensen (1972), may be employed 
for these more general flows. Since these authors were only interested in bodies for which 
IBI <- 1, the tables derived from their analyses are useful in present circumstances only for 
situations where IB*l = IBIS~co _< 1. In this context it would prove useful to have their 
numerical computations extended to the case where IBI > 1 too. 

The asymptotic analyses of Sections 9 and 10 may be employed to treat the cases where 
[B*[ < 1 and tB*[ > 1, respectively, in the limiting case of large P~clet numbers, for general 
two-dimensional shear flows. 

Rheological properties o f  general, two-dimensional linear shear f lows 

Equation [4.27], which applies to all homogeneous linear flows, whether two-dimensional 
or not, may be written in dimensional form as 

T = 2/aoS + ~b/~o[10Q~S - ~Q2(S • ( ee )  + ( ee )  . S  - ] IS:  (ee) )  

- ~B- ~(3Q2 + 4Q~)(A. ( ee )  - ( e e ) .  A) + 5B- ID,(3Q2 + 4Qa)(3(ee ~ - I)]. [11.49] 

From [11.25], [11.26], [11.32] and [11.33] the dimensional rate of strain and vorticity 
dyadics in the (xl, x2, xa) system are 

S = ½qG*(i~i2 + iai~), A = ½G*(i2i ~ - i~i~), [ll.50a, b] 
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where 

q = S / o  - B*/B. [11.50c] 

Substitution of these into [11.49], along with use of the relations B = q- ~B* and [11.45], 
and suppression of the isotropic term 17"33 , yields 

T = 2r/*G*[½(i~i2 + i2il) ] + i~i~z~ + i2i2r 2, [11.51] 

in which r~ and r2 are defined generally by [6.26], and q* is defined as 

q* = T,2/G*. [11,52! 

If in these relations we define 

and 

[~/*] = lim (tl*/q) - P o  [11,53~ 
4,~o ,;b,Uo ' 

Cq]: 2im , 

~/~oqG* 
[q]=2im , 

O#oqG* 
!11.54a. b] 

the expressions thereby obtained for these "intrinsic" viscometric parameters are 

[q*] 5QI - ~-Qz(sin 2 0> - 5B*- 1{3 '~ o = a ~2 + 4Q3)( sin2 0 cos 2~> 

+ ~ 2 " -  1(3Q2 + 4Q3)<sin 2 0 sin 2~b>, Cl 1.55] 

[z*] = 513(B *- 1 _ 1)Q2 + B*- 1Q~] (sin 2 0 sin 2~b> 

- 152"- 1(3Q2 + 4Q3)(1 - 3(sin 2 0> - 1(sin 2 0 cos 2~b>l, [11.56; 

[ . ~ ]  ~- __ 5 1 3 { B , -  1 _~. l j Q 2  + B * -  'Q] ]  <sin z 0 sin 2~b> 

- 152" 1(3Q2 + 4Qs){t - 3<sin2 0) + ½(sin 2 0cos 2~b)l. [11.57] 

The system of relations [11.51]--[11.57] become identical to the analogous simple shear 
relations [8.3]-[8.83 in the case where the two-dimensional flow is taken to be the simple 
shear flow [8.13. This corresponds to B* = B (and, hence, q = 1) and G* = G. 

In applying these relations it must be kept in mind that they apply only in the (x 1 , x2, X31 
system, derived by rotating the principal axes of shear through 135°: that is, they apply to 
the coordinate system in which S and A possess the general forms set forth in [11.251 and 
[1 t.26]. Moreover, the Q values which appear in these relations are those appropriate to 
the value B (i.e. re), rather than B* (i.e. r*). 

By way of a simple illustration consider the case where the rotary Brownian motion is 
dominant. Under these circumstances, the principal theorem of the present section shows 
that the goniometric factors required in [ 11.55]-[ 11.57] are given by [8.12], in which Z and B 
are  replaced by )~* and B*, respectively. Hence, for 12" I << 1, 
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(sin 2 0~> = ~ + _.t_~,26ao.. + O(,;.*'*). 

(sin z 0sin 2~b) = ~[2"  -T~6o(3 + 35B*-2)2 *a + O(,;-'5}], 

(sin 2 0 cos 2~b) = - ~ B * -  12"2 + 0(2*4). 

Introduction of these into [11.55]-[11.57] yields 

[r/*] = [t/] o - 12-~6o(12Q2 + 6Q3 + 35q-1B*-IN)).'2 + 0(2"*), 

[r~'] = [7-t(Q3 - Q2) - ~q-'N]2* + O(,;.'3), 

[z*] = [~(Q3 - Q2) + 16q-1N]2" + O(2"3), 

analogous to [8.13]. Here, [r/] o is defined in [7.8]. 
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[ 11.58a] 

[I 1.58b] 

[ l 1.58c] 

[I 1.59a] 

[l 1.59b] 

[ I 1.59c] 

These results can be confirmed by application of [7.4] and [7.5], which apply at small 
P6clet numbers to any homogeneous linear flow. These relations can be written as 

T = 2/aoG*S* + q~#oG*[T* + q-12*T* + q-22*-'T~' + O(q-32"3)], [11.60] 

where T~, T*, T~' are the same as To, Tm, T2, but with S replaced by S*, B replaced by 
q- IB*, and A replaced by/~*. The quantities S* and A* represent the values of S and A in 
[I !.50] rendered dimensionless with G*, i.e. 

S* = ½q(i l i2 + i2i~), /~* = ½(izi I -- i l i2 ) .  [ll.61a, b] 

Use of these relations in [l 1.60] correctly reproduces the results cited in [11.59]. 

Relationship to the work of Wayland (1960) 

Wayland (1960) undertakes the problem of streaming birefringence in a dilute suspension 
of spheroidal Brownian particles undergoing a general two-dimensional shearing flow. In 
this context, he calculates (for the case of dominant Brownian motion) the orientational 
distribution function f relative to an "intrinsic" system of Cartesian axes which translate 
with the fluid and maintain a fixed orientation relative to the local direction of the stream- 
line along which the fluid translates. This contrasts with our previous calculations, which 
describes the (local) distribution of orientations relative to a material observer, whose 
orientation in space remains fixed while he translates with the fluid. It will be demonstrated 
in this subsection that, by an appropriate re-interpretation of the basic physical parameters 
characterizing the problem, the analysis can be reduced to that for a simple shear or Couette 
flow, for which the essentially complete analysis is already available in Sections 8-10. More- 
over, the subsequent analysis applies equally well to bodies of revolution other than 
spheroids. 
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Figure 17. Curved streamlines in the plane of a two-dimensional flow. 

As in figure 17, consider a typical curved streamline of the two-dimensional flow taking 
place in the x'~ - x~ plane, perpendicular to the vorticity vector. As stated earlier in this 
section, the orientation of these Cartesian axes is arbitrary. The x~ axis is directed out of the 
plane of the paper. Denote by ~ a unit tangent vector to the planar streamline at P, the sense 
of this vector being such as to point in the direction of motion of a material point traversing 
the streamline. Thus, with R as the position vector, 

= aR/?.s, Ii 1.62] 

where ds is a scalar element of arc length along the streamline, taken to be positive in the 
direction in which ~ points. The direction of the vector i~ - i 3 is chosen such that the scalar 
e~ in l11.30] is non-negative. In addition, let fi be a unit normal vector to the streamline at P, 
the sense of this vector being chosen such that (~, fi, i3), in that order, constitute a right- 
handed triad of mutually perpendicular unit vectors. 

In terms of these quantities the local fluid velocity vector u = D R / D t  is given by 

u = gu(x'l,  x'2), [11.63] 

where u = ]ul > 0 is the speed of a material point along the streamline, 

Os 
u = - -  E 11.64] 

Dt 

the operator D/Dt  being the material derivative. 
The axes (~, fi, i3) represent an intrinsic local Cartesian coordinate system, which main- 

tains a fixed orientation relative to the direction of the streamlines. As the material point 
moves along a given streamline, this system of intrinsic axes, regarded as affixed to the 
material point, rotates. The instantaneous orientation of the pair of axes (~, ~) in the plane 
can be specified, for example, by the angle ~t required to bring the x' 1 axis into coincidence 
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with the direction of g upon positive rotation about the |a axis. More precisely, we define 

the angle a by the relation 

= i'1 cos ~ + i~ sin ~. [11.65] 

Since fi = i 3 x g, this makes 

tt = - i'~ sin ~ + i~ cos  a. [11.66] 

The vector g is locked into the intrinsic reference frame and rotates with it. Accordingly, 
from rigid-body kinematics (Goldstein 1950), if F is the angular velocity with which the 
intrinsic reference frame rotates relative to a space-fixed observer, 

D~ 
- - = F x ~ .  
Dt 

Inasmuch as the vector F possesses no component in the g (or fi) direction, the above may 

be solved for F to yield 

Dg 
F = g x - - .  [11.67] 

Dt 

Differentiation of [11.65] and subsequent use of [11.66] gives 

in which 

D,~ Da ,t 
Dt ( -  i'l sin ~t + t 2 cos *t) ~ -  

- a&, [ l  1.68] 

D ~  
= [11.69] 

Dt 

Consequently, [11.67] yields 

F = ia~ [11.70] 

for the angular velocity vector of the intrinsic reference frame. 
In order to obtain an explicit expression for ~, we have by the chain rule that 

D~ d~ Ds 
Ot = 8s Ot [11.71] 

However, by Frenet's formula (Milne-Thompson 1960) 

tgg 
ds x, fi, [I 1.72] 

in which x~ is the curvature of  the streamline at P. This curvature is posit ive or negative,  
according as tt points from the convex  to the concave  side of  the streamline,  or conversely.  
Its magni tude  is IxJ = Ji~/Osl  = ft9211/8s21, which is the inverse o f  the radius R of  curvature 
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Figure 18. Curved streamlines and their orthogonal trajectories for a two-dimensional flow, 

of the streamline. Equations [11.68], [11.71] and [11.72] in conjunction with [11.64] combine 
to yield 

= ~%u. [11.73i 

Consider now an intrinsic system of orthogonal curvilinear coordinates in the plane, 
composed of the streamlines, PS, and their orthogonal trajectories, PN, as in figure 18. 
The scalar dn is an element of arc length drawn along the orthogonal trajectory, and is taken 
to be positive when measured in the direction of ft. In this intrinsic system the gradient 
operator is (Milne-Thompson 1960) 

V = ~ ~- + h . -  + i 3 ~ - - .  [11.74i 
( S ( ! f l  ( ' X  3 

Since u is of the form [11.631 it readily follows that the local velocity gradient referred to the 
intrinsic axes is 

?u ?u 
Vu = gg ~-- + fifiK, u + gfiK~u + fig 717 

('S 
[i 75q 

wherein we have employed [11.723 and its counterpart for the normal derivative [Milne 

Thompson 1960), 

= ~,-,fi, [ 11.76] 

with •,, the curvature of the plane curve PN orthogonal to the streamline at P. In conse- 
quence of the incompressibility condition V.  u = 0, equation [11.75] requires that 

~u 
?--~ + ~,u = 0. [1 1.77] 

which may be used to simplify [11.75]. 
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In view of [ 11.3] and [ 11.30], insertion of a cross-product symbol between the antecedents 
and consequents of [11.75] gives (cf. Milne-Thompson 1960) 

m = ~ K.u  - • [ 1 1 . 7 8 ]  

Equations [11.75] and [11.77] yield, for the rate of strain dyadic, 

S = (~ t  - it it)  + (it~ + K ,u  + • [11.79] 

For the fractional elongation rate, defined as 

S., = fi . S . i ,  [11.80] 

this gives (cf. Milne-Thompson 1960) 

1( Ou) [11.81] + T, • 

Addition of [ 11.78] and [ 11.81 ] with subsequent utilization of [ 11.73] furnishes the relation 

o.) = / ,  - S.,.  [ 11.82] 

With use of [11.12], [11.19], [11.65] and [11.66], equation [11.80] becomes 

S , ,  = - S sin 22o, [11.83] 

in which 

2 0 = ~x - ~ .  [11.84] 

~1 x~ StreomlJn~./f 

1is/ ~ 

Figure 19. Relationships between different Cartesian coordinate systems pertaining to a curved 
streamline in a plane. 
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As shown in figure 19, ).o is the angle between the direction 61 of the first principal strain 
axis and the direction ~, of the streamline, in the sense shown in the figure. More precisely 2 
is the angle defined by the relation 

'~i = ~1 COS ft.,, -~- ~ 2 sin ,;.,, 

as follows from [11.65] and [11.19]. Consequently, 

rll.g5] L 

sin 22, = 216~ • ~)(62 • ~), [ 11.86 

which may be used in [11.83]. 
From [11.42], [11.43] and [11.32], [11.33] we have for a general two-dimensional flo~' thai 

DO 
Dt = ½BS sin 20 sin 20,  [I 1.S73 

D,p 
. . . .  , )  + BS cos 20, f l 1.88] 
Dt 

where, as usual, 0 is the polar angle measured with respect to the i 3 axis, and ~b is the azi- 
muthal angle shown in figure 19. Recall that the .x~ - x z axes are defined relative to the 
principal axes 62 and O 2 a s  in figure 16. Alternatively, if ), is the azimuthal angle measured 
relative to the first principal axis 61 , as in figure 19, then 

4, = ;. - 135 °.  I11 .893 

In these relations DO/Dr and DO/'Dt [or D)#'Dt) are the time rates of change of the local 
orientation angles 0 and 4~ as measured by a material observer who translates along with 
the fluid, while maintaining a fixed orientation relative to a set of axes fixed in space, in 
setting down these relations we have implicitly utilized the fact that the center of the cen- 
trally symmetric body translates along with the fluid (cf. [3.1]), that is, we are assuming 
that the fundamental equations [2.9] and [2.10] apply even for nonhomogeneous flows of 
the type under discussion. If L is the length scale of the inhomogeneity [typically the charac- 
teristic linear dimension of the apparatus in which the flow occurs) and c is the maximum 
linear dimension of the suspended particle, then this condition will be met when c/L << 1. 
This is tantamount to supposing that all of the preceding equations apply locally, where ¢~ 
and S are then the local values of the fluid angular velocity and shear, it should also be 
emphasized that the angle q~ is also a local value, since ~ is defined relative to the principal 
axes of shear, which vary in direction from point to point in the inhomogeneous flow. 

Let 30/6t  and 6c~/6t denote the rates of change of the orientation angles as measured by 
an "intrinsic observer" who, while translating along with the fluid, rotates in such a manner 
as to maintain a fixed orientation relative to the streamlines. These may be obtained in the 

manner indicated below. 
Since the orientation vector e is locked into the particle, it follows from rigid-body 

kinematics that 

D e  
- -  = ~ × e ,  [ 1 1 . 9 0 i  
Dt 
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where ~I is the angular velocity of the suspended panicle relative to a space-fixed observer. 
The analogous rate of change from the vantage point of an intrinsic observer is 

6e [11.91] ,~ ~- = (tl - F) x e ,  

sinc 1"1 - F is the angular velocity of the particle relative to this observer. The last two 
relations combine to yield 

6e De 
- F x e .  [11.92] 

~t Ot  

From [11.41] and [11.70] in conjunction with the metrical relation (Happei & Brenner 1965) 

de = io dO + i~ sin 0 d~, 

then follow the relations 

60 _ DO, __t~ = __D~b _ &, [11.93a, b] 
tSt D f 6t Dt  

or, using [I 1.82], [11.83], [11.87] and [! !.88], 

• 60 
- -  -"  ½BS sin 20 sin 2~, 
6t 

[ 11.94] 

rh,~ 
_v< = B S  cos 2~ + S sin 220. [ 11.95] 
6f 

These equations are identical to those given by Wayland (1960).* 
The rotary flux vector relative to the intrinsic observer is 

~e Of [ 1 1 . 9 6 ]  
J = f ~'~ - D, ~e" 

In the steady state this vector satisfies the conservation law (Brenner & Condiff 1974) 

• j = 0, [! 1.97] 

leading to a second order partial differential equation for the orientational distribution 
function f Wayland (1960) succeeded in obtaining the first few terms in a series solution 
of this problem, valid for small values of the dimensionless parameter S/D,  (and IBt -< 1) 
--corresponding to the case where the rotary Brownian motion dominates over the shear. 
However, as we now show, Wayland's problem can be reduced to the case of a simple shear 
flow, for which essentially complete solutions are already available over the entire range 
of the relevant variables. 

* No ta t i ona l  equiva lences  are  as follows: $ = E:  B = b: 0 ~" R - 135"; ~.0 = - A o :  D, =- D. Wayland ' s  
a z imu tha l  angle  :. should  not  be confused wi th  our  weighted  P6clet n u m b e r  ~.. 



296 HOWARD BRENNER 

Define dimensionless quantities G, and B,  as follows: 

G,  = 2S sin 22 o, [ 11.98a] 

B,  = B/sin 22 o. [11.98b] 

In terms of these, [11.94] and [11.95] become 

6O 
-6t- = ¼B,G, sin 20 sin 2~b, [I 1.99ai 

54, 
fit - ½G,(1 + B* cos 2q6}. [11.99b] 

The form of these equations is now identical to Jeffery's equations (cf. [10.1] and [10.2]) for 
the rotation of a body of revolution (characterized by the rotary parameter B,) suspended 
in a simple shearing flow at shear rate G,  .* Indeed, for the case where the flow is the simple 
shear flow [8.1] we have in [11.63] that u = Gxl and 

= i2 ,  fi = --i 1, 

SO that ds -= dx z and dn = - d x  I. With use of [11.23] and [11.85] we thereby obtain 
cos ).o = sin )-o = - 2- t,2, whence 20 = 225 °. This makes sin 22 o = 1. Since, for the simple 

shear flow [8.1], S -- ½G, equations [11.98] become 

G, = G, B,  = B, 

as was to be expected for this case. 
It is an immediate consequence of [11.99] that the differential equation governing the 

distribution of particle orientations (and, hence, the various moments of the distribution) 
relative to the intrinsic axes is identical to that for a simple shear flow characterized by the 
parameters B,  and G, .  All of the distribution function and momental results of Sections 
8-10 may therefore be applied in present circumstances by the simple expedient of replacing 

B and G by B,  and G, ,  respectively. 
By way of example, Wayland (1960) utilized his power series solution of the intrinsic 

distribution function for small S/Dr to calculate the goniometric factors (sin2 0 cos 2~b> 
and (sin 2 0 sin 2~b> required in his birefringence calculations. These results can be repro- 
duced from our present analysis as follows. For 12,1 << 1, the adaptation of [8.12] to the 

present class of problems yields 

<sin 2 0 cos 2~b> = -~6oB, 122 + 0(24,), 

* F r o m  [3.32] the c o m p o n e n t  f l  • e of the angu la r  veloci ty vector  of the ro ta t ing  par t ic le  a long  its symmet ry  

axis is to • e relat ive to a mate r ia l  observer.  Hence, relat ive to an in t r ins ic  observer ,  this  c o m p o n e n t  is 

~,, - F , , - d ~  " ( f ~  - F )  • e = Ito -- F )  • e .  

F r o m  [5.5], [11.30]. [11.70], [11.82], [11.83] and  [11.98a] this  yields 

f2~ - F,, = ½-G, cos 0, 

which is the coun te rpa r t  of [10.3]. 
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and 

(s in e 0 sin 2 ~ )  = :-~,~.[I - ~--~(3 + 35B.  ~)~2. + O(/14.)], 

in which, from [I 1.98], 

Hence, 

`1, = B,G, /D,  =_ 2BS/D,. 
",,L. 

4BS 2 sin 2,t o + . . . .  
(sin 2 0 cos 2~) = 90/),2 

and 

2BSI'- _B'$213 sin i 2`1ol ] 
(s in2Osin2~)  = 1 - 902 135 + ~s  ] + . . . .  

From [I 1.89] we have that cos 2~ -: - sin 2`1 and sin 2~ - cos 2̀ 1. Conversion to Wayland's 

(1960) notation utilizing the notational equivalences set forth in the footnote on page 295 
thereby yields 

and 

4bE 2 sin 2Ao + . . . .  
(sin 2 0 sin 2`1) = 90D2 

2bE[ "  biEZ I 3 sin_ l_2A:l ] (sin'oc°s2x>--1- Ll- l + b 2 ] + . . . .  

in exact agreement with Wayland's equation [23].* 

This calculation is, of course, purely illustrative. More generally, one can employ tables 5, 
6a, 6b, 6c and I0, as well as the asymptotic results of Sections 9 and l0 to obtain the pertinent 
gorriometric factors for any values of Wayland's parameters. In this connection it is of 
interest to note that Riley (1973} has recently outlined a detailed numerical scheme for the 
solution of Wayland's distribution function differential equation for arbitrary values of 
the parameter `1.. Such a scheme is now seen to be superfluous. 

* The distribution function itself, rather than its moments, can also be compared with Wayland's expression 
for this quantity. In making this comparison we obtain identical results for the quantities Fo, Ft, F2 appearing in 
his equation (22). However, in place of his expression for Fs we obtain 

 .rr, . .  + 'i" , , . 2 ^ . . .  ' ' "  F s = 4 x _ ~ [ ~ s  m 0_11 s i n ' 2 4 1  a^-] " - - - ~ s m  0 s i n l ~ . + l ~ s m  0cos6 • 

J 
This differs in three minor rospeets from that of Wayland. Since the expressions for the goniometric factors agree, 
these discrepancies are presumably only typographical in nature. 
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12. U N S T E A D Y  STATES 

Equation [4.27] is applicable only to the steady state, where f ' f /?t  = 0 in [4.11~. For time- 
dependent orientational distributions, [4:14] must be replaced by 

. . . .  1 ~ f +  ; ,V , , . [ IB - ' , ; t . e  + S . e  - g . e e e ) l ]  = V~,t: [17_.1~, 
D, ?t 

If this equation be multiplied by e e  d2e and integrated over all orientations, it readily' follows 
that the additional term 

I ? 
- 2_-B-G i~'-t ( e e )  

will now appear on the right-hand side of [4.26]. Hence, if we define a dimensionless time i as 

[4.26] may then be written as 

S : (eeee )  = + ( e e ) . S ]  - 2-113(ee) - !) - IB 1 

in which 

, . ,  ( ee ) ,  [12.3! 
' J r  

T - 2#oGS 

~oC 

with 

denotes the dimensionless, time-dependent, Jaumann derivative of an arbitrary dyadic D 
(cf. [7.2b] for the corresponding time-independent derivative, J,(D)). 

It is now assumed, as is usual, that the hydrodynamic portion of the problem of calculating 
the stresses in the flowing suspension is governed by the quasistatic (i.e. time-independent) 
Stokes' equations [2.6]-[2.8]. Thus, the sole effect of the unsteady motion is assumed to 
reside in the fact that the orientational distribution function f will depend explicitly upon 
the time. Consequently, in place of [4.27], the deviatoric stress is now given by the more 
general expression, 

= 10Qlg - 15Q2 sym. t r (S .  (ee)) 

+5),-~13Q2 + 4Q3)(3(ee ) - I) + 5B-~(3Q2 + 4Q_~)~i (ee) ,  

sym. tr D ~'~--' ½(D + D*) - ~I(I:D) [12.6] 

the symmetric, traceless portion of a general dyadic D. The angular brackets continue to 
be defined as in [4.29], with f given by the solution of [12.1~. For time-dependent fluid 
motions, i.e., S = S(t), A = A(t), it follows that the second orientational moment will 
generally be of the form 

(ee) = function[S(/), ~,(/); B, )~, i]. [12.7! 

[12.5! 

~/D ?D 
(/ [ ?[ 
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Substitution into [ 12,5] then shows that the mean deviatoric stress T in the suspension will 
generally be time-dependent. 

Owing to our quasistatic assumption, the same five material constants governing steady- 
state theological behavior also govern the comparable unsteady-state behavior. Prior 
applications of the general theory may thereby be readily extended to a variety of nonsteady 
motions of interest in rheological applications. For illustrative purposes only the simplest 
mode of unsteady behavior is considered in this section. 

Stress relaxation after cessation of steady flows (Giesekus 1958, Bird et al. 1971, Hinch & 
Leal 1973) 

Attention is directed to the relaxation of stresses ensuing after an arbitrarily specified 
steady flow is suddenly stopped. For t < 0 a given state of steady motion, characterized 
by the constant shear and vorticity dyadics S and A, is assumed to exist. At time t = 0 the 
flow is abruptly stopped and subsequently maintained in that state--whereupon S = A = 0 
for all t > 0. Due to the anisotropic orientational distribution prevailing at t = 0, cor- 
responding to that which exists in the steady flow prior to cessation of the motion, the 
stresses do not instantaneously vanish. Rather, they decay gradually until the distribution 
becomes isotropic due to the Brownian rotation. 

For t < 0 the deviatoric stress for the steady motion is given by [4.27] or, equivalently, 
[12.5] with ~/~t =- O. On the other hand, for t > 0 the deviatoric stress is given by [12.5] as 

T+/qblZo=~2B-l(3Q2+4Q~)(6D,+~}(ee-Xal) + 30D, N(ee  - axI), [12.8] 

in which [2.36] has been employed to eliminate Q3 in favor of Q~. Since no fluid motion 
exists, this stress arises solely in consequence of the rotary diffusion. Upon setting S = A = 0 
in [12.3] it follows that for t >_ 0, 

(6D, + ~ ) ( e e -  ~ I ) = 0 .  [12.9] 

The angular brackets here and in [12.8] refer to the orientational moment derived from the 
distribution function f +  satisfying 

lcOf+ 2 +  
D, 0t = Vef ' [12.10] 

as follows from [12.1] in the absence of fluid motion. Accordingly, the deviatoric stress 
adopts the simple form 

T + = 30dPlzoD, N(ee - ~I). [12.11] 

Integration of [12.9] for t > 0 yields 

(ee - ~I> = (ee - ~I>o exp ( -6D,  t), [12.12] 
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in which the constant ,  t ime-independent  dyadic denoted by the subscript o is the initial 

value of (ee  - ½I) at zero time. In turn, since f +  = f -  at t = O, this is the same as the 

value of the goniometr ic  dyadic appropr ia te  to the steady-state orientational  distribution 

prevailing for t < O. In this manner  the deviatoric stress for t > 0 is given by the expression 

T + = 304)laoD, N ( e e  - 1 gl)o exp ( -  6D, t). El2.13] 

The stress therefore relaxes exponential ly rapidly with time, the relaxation time being 
(6D,)- 1 

At time t = 0 + the stress is given by the above relation with the exponential  factor sup- 

pressed. In contrast,  the steady-state stress, T - ,  say, is given by [12.53 with ?/?t - O. The 

stress is therefore discont inuous at time t = 0, the values at t = 0 -  and t = 0* being dif- 

ferent. The diffusive contr ibut ions to the stresses T -  and T + are the same at t = 0, since 

the orientational  distribution function and, hence, ( e e -  ~1) are cont inuous  at t = 0. 

However,  the contr ibut ion of S and A to the stress vanishes abruptly at t = 0. Therein 

lies the source of the stress discontinuity.  

When the stress relaxation proceeds from a previous state of steady simple shear, we find 

from the definitions of the various goniometr ic  and viscometric factors in [5.5], L6.261 and 
[8.343 that [12.13] may be written as 

T'~2/qS~,,D ~ = 15N(s in  2 0sin 2q~)oe -~'D'', i12.14ai 

32+ = ( r + l  - r'33)/C~NoO r = 1 5 N  (sin 2 0 cos 2 ~ + 3 sin 2 0 - 2)oe "'~', [12.14bi 

and 

~,; =-- (T ;2  - T~3)/~b#oD r = - 15N(s in  z 0cos2~b - 3 sin 2 0 + 2),,e ~D,.,. i[12.14c~ 

all other  stress componen ts  T + being zero. The goniometr ic  factors indicated by the affix o 

are those appropr ia te  to a simple shear flow, available in Sections 8 10. Values of the 
material constant  N are available for a variety of bodies in Section 3. 

Long  thin spheroid at large POclet numbers  

The N value appropr ia te  to a spheroid for which rp >> 1 is given by i3.203. When the 
shear rate G in the steady shear flow is sufficiently small to satisfy the inequality P 1 3 >> r, >> 1. 

we find with use of [9.5]-[9.7] (with r~ = rp) that at time t = 0 + 

T ?2 _ 1.5r~ P -  ' 
[12.15a~ 

~l~oDr In 2rp - 0.5 

8.772rp 6r 2 (12.15b, c] 
Z~ = In 2r~ - 0.5 E~ = In 2r~ - 0.5" 

By contrast,  for the steady shear, we have from [8.37] that in the same circumstances, 

T;2  - #oG 0.315rpP 
- = , [ 1 2 . 1 6 a ~  

O~oDr In 2rp - 0.5 

0.25r~ , E ~ - =  0.25r~ 
E~- - l n2 r  v - 1.5 l n 2 r p -  1.5 [12.16b, c~ 
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The magnitudes of the shearing and normal stresses thereby decrease by at least an order of 
magnitude immediately upon cessation of the flow. 

Non-interacting dumbbell 

With use of [3.65b] and [8.12], the stresses appropriate to a dumbbell composed of non- 
interacting spheres are, for small P6clet numbers, given by the expressions 

T~f2/¢/~oD, = (9/20)r2pe -6°'', [12.17a] 

(T~(~ - T~3)/qblzoD, = -(3/70)r2p2e -6° ' ,  [12.17b] 

(T~'2 - T~3)/~/goDr = (3/28)r2p2e -6° ' ,  [12.17c] 

valid for P << 1. These agree exactly with the results of Bird et al. (1971), derived from a 
detailed, small P6clet number solution of[12.10] subject to the initial condition that f  + = f -  
at t = 0. (Notational equivalences are the same as those set forth in the footnote on p. 244.) In 
this connection we note that the exact values for the goniometric factors for a non-interacting 
dumbbell (B = 1) required in [12.14] are already available in table 5 over the complete 
range of P6clet numbers. 

Two-dimensional flows 

The expressions [ 12.14] may be applied to the two-dimensional flows discussed in Section 
11. As outlined there, the goniometric factors required in [12.14] can be obtained from those 
available for a simple shear flow in Sections 8-10 by the simple expedient of replacing B 
and G by B* and G*, respectively, defined in [11.32] and [11.33]. The "1" and "2" directions 
appearing in [12.14] are those defined relative to the principal axes of shear of the two- 
dimensional flow by [11.23]. With this choice of directions, all T~ are zero, except those 
appearing in [12.14]. 

Other examples of important unsteady flows may be found in the works of Kirkwood 
(1967) for "stiff" linear polymer chains, Bird et al. (1971) for dumbbells, and Leal & Hinch 
(1972) and Hinch & Leal (1973) for slightly deformed spheres and spheroids. 
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A P P E N D I X  A 

The Q.ij~l tensor for a body of revolution 

From [2.13c], [2.14c] and [2.17c] it is found that the material tensor Q satisfies the sym- 
metry conditions 

Q~ikl = Qi~kl = Qi~,~ = Qkui. [A.1] 

These symmetries are the same as those arising in the Hooke's law elasticity tensor 
(Frederick & Chang 1965, Love 1944, Landau & Lifshitz 1959) for linearly elastic anisotropic 
solids; that is, if, following Frederick and Chang's (1965) notation, G~ = ~l  represents the 
stress in an elastic material, and 

lu = ½(Ukj + ut.~) = lit [A.2] 

represents the strain (with ui the displacement vector), then the constitutive equation for a 
linearly elastic anisotropic material is 

trij ---- Ci j la l t l ,  [A.3] 
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in which the elasticity tensor C u u  (a material tensor) possesses the same symmetries as 
set forth in [A.1]. In general, such a tensor possesses 21 independent scalar components. 

Following Frederick & Chang (1965) we replace [A.3] by the "engineering notation" 
relation, 

o~ = C ~ I ~  (~, fl = 1, 2, 3, 4, 5, 6), [A.4J 

in which 

(71 ~ 0"11, 0"2 ~--- 0-22 , 0"3~0"33 , O ' 4 ~ 0 - 2 3 = 0 " 3 2  , 0"5~0"31 =0"13 ,  0"0~O'12=0"21  , [A.57 

along with similar relations connecting the t~ to the ]ij. The symmetry relations [A.1] are 
then summarized by the relation 

C ~ I  J = C ~ .  

Upon writing out [A.3] and [A.4] explicitly, and utilizing the equivalences [A.5] (along with 
similar equivalences for the strain}, we find upon comparison that 

C l l  = C l l l l ,  C12 = C1122,  C13 = C l 1 3 3 ,  C14 ~--- C1123 = C1132,  

C l S  = C1131 = C1113 , C16 --~ C1112 = C l 1 2 1 ,  

and 

C41 = C2311 = C3211,  Ca.2 = C2322 -~- C3222 , C43 = C2333 = C3233,  

C44 = 2C2323 = 2C2332 = 2C3223 = 2C3232 ,  C45 ~-- 2C2331 = 2 C 2 3 1 3 =  2C3213 = 2 8 3 2 3 1 ,  

C46 : 2C2312 = 2C2321 = 2C3212 = 2C3221, 

etc. In general, the factor of 2 arises only when both  the first and second indices are either 
4, 5 or 6. 

Love (1944) presents a detailed investigation of the symmetry properties of the C~¢ for 
the case of"transverse isotropy" (see p. 152, equation [2] and p. 154, equations E5~-[1 li of 
Love 1944). This particular symmetry is equivalent to that of a body of revolution, though 
not necessarily possessing fore-aft symmetry. Using these results he demonstrates that, of 
the 21 independent components of C'=o, in a body-fixed system of Cartesian coordinates 
(-~, .~2 -%), with -~3 as the symmetry axis, the following components must be zero: 

and that the following four relations must hold among the remaining nine nonzero com- 

ponents:* 

C11 ~__ C 2 2 ,  C13 ~. C 2 3 ,  C44 = C 5 5 ,  C6 6 = Cl~ - C12. [A.7! 

* Love's (1944) notation differs slightly from ours, the connection between them being 

~C,p(this paper) for fi = 1,2. 3: 
C,a(Lovej = (½C,o[this paper) for fl 4, 5, 6. 

The extra factor of 1/2 arises from the fact that in Love's (1944) definition of the strain e~j we have that 

111 = ¢'11, /22 = ~'22" /33 = e33" 

but 
123 = 1,'2,,. t , ,  = ~,,~,, I,: = ~,,,~. 
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Imposition of fore-aft symmetry (i.e. invariance of the body under the transformation 
3 ~ -3 )  does not result in any further symmetry reductions, since the existence of a center 
of symmetry is without effect on the general properties of the elastic coefficients CLove 1944). 

We may conclude from this that the ¢~# matrix for a body of revolution may be charac- 
terized by only 5 independent coefficients, say ¢11, ¢12, ¢13, ¢33 and ¢44 (with £3 as the 
symmetry axis). Consequently, the only nonzero tensor components of Cou, and their 
relations to these 5 independent matrix coefficients, are as follows: 

{~1111 = C-'2222 (~-~'~11)' ¢'~3311 = ¢'1133 : {~3322--'-- ¢2233 (---~¢13)' 

C2323 C'z332 C3223 ~3232 ¢-3131 ~-~3113 ¢1331 : (~-~1313 (~2-¢~44), 

~'2211 ~- ~-'1122 (-~-~12).  ~-~3333 (-~-~-~33), 

C1212 = C1221 = C2112 = ¢2121 [~l(C-~ll -- {~12)]" [A.8] 

These relations apply, of course, only in the body-fixed system of coordinates, denoted by 
the overbar. 

As can be verified via a term-by-term comparison, the Cijk~ tensor may therefore be 
written as 

Cijki : (~ij~klCo -~- (~ik(~jl -~ (~il(~jk)Cl "~- (~klf~i3g~j3 "~ (~ijf~k3(~13)C2 

÷ 6i3(~ja6k3613 C 4, [A.9] 

in which we have defined* 

Co = C12, Cl = ½(¢11 - ~12), C2 = t?, 3 - t712, 

C3 ~- ½(¢12 ÷ ¢~44 - ¢11) ,  C4 = ¢11 ÷ ¢~33 - 2 ¢ 1 3  - 2¢44. 

With e - i  3 a unit vector drawn along the symmetry axis of the axisymmetric body, we 
have that the components of the vector ei in the body-fixed frame are (el, ~2, e3) = (0, 0, 1), 
i.e. ~,~ = t~i3. Consequently, [A.9] may be written in an arbitrary system of Cartesian axes as 

Cijkl : (~ijf~klCo ÷ (~ik(~jl ÷ (~il(~jk)C1 ÷ (~kleiej + t$ijekel)C 2 

+ (6~keiel + tSitejek + 6ikejel + 6jteiek)C3 
+ eiejekelC4, [A.10] 

With regard to the Qijkl t e n s o r  we may therefore write an expression identical to [A.10], 
with coefficients Qo, QI . . . . .  Q4 appearing in place of C o, C 1 . . . . .  C4, respectively. Upon 
forming the product Q.ijklSkl t o  obtain the contribution of the shear to the stresslet A~j in 
[2.11], we observe that the contribution of the Qo term to A~j is tS~jQoSk~. This, however, is 

* Inverse to these are the relations 

~11 = Co + 2Ct~ e l 2  = Co. 

C3a =Co+2C1 +2C2 +4C 3 + C  4, 

C 1 3 =  C o + C z ,  

t~44 = 2C 1 + 2(? 3 . 

J.M.F., Vol. I. No. 2 H 
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identically zero in consequence of the incompressibility condition, Skk - ~ -  O, Hence. without 
loss of generality we may put 

Q0 = 0, [A. l l ]  

since the term makes no contribution to A o anyway. Furthermore, since 

QiiuSkt = (3Q2 + 4Q3 + Q4)eketSkl 

[where it has been noted that Skk = 0), it follows from the requirement of [2.15cl that the 
term in parentheses must be zero, i.e. 

Q4 = -3Q2 - 4Q3- [A.12i 

Substitution of [A.11] and [A.t2] into [A.10] (with the C's, of course, replaced by Q'si 

therefore yields the expression 

Qijkl = (6ikdjl 4- 6ilOjk)Q1 + (bktelej 4- 6 i ieke  I -- 3eie)ekel}Q2 

+ (6¢keiel + 6 , e i e  k + 6ikeje t + 6 j i e  k -- 4eiejekeOQ 3 . [A.13! 

In consequence of this relation, the Q tensor may be regarded as possessing only three 
independent components. It should be observed that each of the three separate terms in 
[A.13] individually satisfies the general symmetry requirements imposed on the Q tensor by 
[2.13c], [2.14c], [2.15c] and [2.17c]. In anticipation of possible generalizations of the 
theological theory to particles devoid of fore aft symmetry, we emphasize that the form 
[A. 13] applies without change to such circumstances. It is invariant under the transformation 
e ~ -e ,  though the body geometry itself will not generally be invariant under this trans- 
formation, unless it possesses fore-aft symmetry. 

An alternative and philosophically more satisfying scheme (de Groot & Mazur 1962, 
Jeffreys 1961) for investigating transverse isotropy utilizes the infinitesimal rotation matrix 
(Goldstein 1950) 

Rij =~ il 
for rotation about the x 3 axis to determine the symmetry restrictions resulting from the 
fact that the body shape is invariant under rotation through an arbitrary infinitesimal 

angle dO about this axis. 

A P P E N D I X  B 

Mater ia l  constants Jbr ax isymmetr ic  slender bodies possessing Jbre-q f t  symmetry  

Cox (1970, 1971) and Okagawa et al. (1973) demonstrate how the hydrodynamical 
resistance properties of long slender axisymmetric bodies may be calculated for the special 
case of simple shearing flows. It will be shown in this Appendix that the fundamental 
rheological material constants for such bodies may be extracted from their analyses. Once 
obtained, these coefficients may be applied to any type of homogeneous shearing flow. 
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3 

2 -\ 

Figure 20. Axisymmetric body held in place in a simple shear flow by the action ofan external couple. 
The streamlines are at right angles to the symmetry axis of the body. 

We address ourselves first to the problem of calculating "K± and ,. Cox (1971) considers a 
slender body suspended in the undisturbed simple shear flow 

V °° = i 3 G x  2, [B.1] 

and supposes that an external couple is exerted on the body sufficient to maintain it at 
rest with its symmetry axis lying in the x2 - x3 plane. When the symmetry axis coincides 
with the x 2 axis, perpendicular to the streamlines, as in figure 20, the couple exerted by the 
fluid on the body is given by Cox (1971) for rp >> 1 as (L t , L 2, L3) = (L±, 0, 0), where 

3 87t[" 1 K ,  7 

Figure 21. Axisymmetric body held in place in a simple shear flow by the action ofan external couple. 
The streamlines are parallel to the  symmetry axis of the body. 
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This result applies equally well to both sharp- and blunt-ended bodies. 
On the other hand, when the symmetry axis of the body lies along the x 3 direction. 

parallel to the streamlines, as in figure 21, the corresponding couple is iCox 1971) 
(L1,  L2,  L3) = (L,,, 0, 0/, in which 

for sharp-ended bodies, and 

L, = 12o2rrab2G + i _ ~83i 

L,, = 12oLabZG [B.4i 

for blunt-ended bodies. 
For a nonrotating (~  = 0) axisymmetric body possessing fore aft symmetry, we find 

generally from [2.10], [2.12b, c], [2.19@ [2.21] and [2.23] that 

L i = #o6Vp[{eie:K, ,  + (6ij - e i e j ) rKl}e ) j  - (~,ijlete k + aikletei)Sikr], lB.5? 

With the undisturbed shear flow given by [B.ll we have in the present case that 

~ i  = 61 /G/2 ,  IB.61 

and 

Y'jk ~- (~j2(Jk3 ~- (~j3(392)G/2. lB.7! 

When the symmetry axis of the body is oriented perpendicular to the undisturbed stream- 
lines, as in figure 20, it follows that the components of the e vector in the space-fixed 
reference frame (Xl, x2 ,  x3) are % = 6,~2 {m = 1, 2, 3). Consequently, it is found from 
[B.5?-[B.71 that (L  1 , L 2, L3)  = (L±, O, 0), with 

L~ = 612,,Vp61½'Kl + ft. [88 i  

Similarly, when the axis of revolution of the particle is oriented parallel to the streamlines, 
as in figure 21, e,, = c~m3, whence [B.5]-[B.71 yield ILl, L2, L3) = tL~,  O, 0}, in which 

L. = 6120 VrG(½rK t - r). [B.9] 

Since the particle volume is given by the expression Vp = n a b a K 2 ,  simultaneous solution 
of [B.81 and lB.91 for 'Ki  and r yields 

rK± = 167r12o a b 2 G K 2 )  - I{L~ + L, ), lB. lOi 

and 

z = (12n12oab2GK2)  - I ( L  l - L,,). iB.111] 

Substitution of [B.2]-[B.41 into these relations, and use of [2.25], yields the expressions for 
"KI and N set forth in [3.437 and [3.441 for pointed bodies and [3.511 and [3.523 for blunt 
bodies. 

Use of [2.28a] in conjunction with lB.10] and lB.11? gives 

B = ( L ~ / L , , ) -  1. [8123 
(L±/L,~) + 1 
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This leads to the B-values set forth in [3,46] and [3.54]. As follows from [B.2]-[B.4], 
L±/I~, >> 1 for both pointed and blunt bodies. Consequently, B lies in the range 0 < B < 1 
for both classes of bodies. Hence, comparison of [B.t 2] with [2.30] yields, for the equivalent 
axis ratio, 

r e = (L±/~,)'/z, [B.13] 

in agreement with Cox (1971). This leads to the values of re set forth in [3.45] and [3.53]. 
The formula for "K. may be obtained by noting that the couple (Ll, L2, La) exerted by 

the fluid on a slender axisymmetric body rotating with angular velocity (fl, 0, 0) about its 
symmetry axis Oxl in a fluid at rest at infinity is (of. equation [7.5] of Cox 1971) 

L 1 = - 4 l . t o f ] V  p ,  L 2 = L 3 = 0 .  lB.14] 

However, for this case, [2.10], [2.12b] and [2.21] combine to yield 

LI = -6#ofW~'K,,, L2 = L3 = 0. lB.15] 

Comparison with [BA4] then gives 

'K. = 2/3, [B.16] 

valid for both sharp- and blunt-ended bodies. 
Values of the translational resistance coefficients 7~. and t/~± for slender bodies may be 

obtained as follows: for an axisymmetric body translating in a fluid at rest at infinity, [2.9] 
and [2.20] combine to give 

F, = -#o'1~,, U, F± = -#otI~±U, [B.17a, b] 

for the forces exerted by the fluid on the body when it translates with velocity U (in a fluid 
at rest at infinity) parallel and perpendicular, respectively, to its symmetry axes. For these 
two cases, Cox (1970) gives the formulas 

4ngoaU f #oaU ) 
ln2rp + Co [lmrpl ) 

8n#oaU ~ f  #oaV ] 
F± = - I n  2rp + Co + 1 + t ; ~ . ~ j ~ .  [B.19] 

Comparison with [B.17] furnishes the values for the translational resistance material con- 
stants cited in [3.37] and [3.38]. 

The material constants Q1, Q2 and Q$ may be derived from the work of Okagawa et al. 
(1973), concerned with the rheological properties of slender axisymmetric particles suspended 
in a simple shear flow (in the absence of rotary Brownian motion). In essence, these authors 
present expressions for the A o coefficients in [3,4] for the simple shear flow [B.1] charac- 
terized by the rate of strain tensor [B.7]. In conjunction with [2.35] such information suffices 
to calculate the three material coefficients Q1, Q2 and Q~. 
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The A~j coefficients presented by Okagawa et al. (1973) are not precisely those appearing 
in [3.4]. To distinguish between the two sets of coefficients we will let/]ij  denote the tensor 
coefficients given by Okagawa, et al. It is readily shown* from their definition that they are 
related to our A~j coefficients by the expression 

8rt ~ 
= - ~6~jAkk), Ao  ~ (Aij l ~ lB.20! 

where Akk = :411 + /~22 -[- A33. Use of the expressions for the ,4ij (given by equations [57] 
and [69] of Okagawa et al. 1973) in the space-fixed system of Cartesian axes depicted in 
figure 22, then yields 

A 11,/G = 16C 1 { 1 - 3 cos 2 0) sin 2 0 sin q~ cos q~, 
45A 

A22/G - 

A33/G - 

16C1 
45A (1 - 3 sin 2 0 cos z ~b) sin 2 0 sin ~b cos 0, 

16C1 
-45-A (1 - 3 sin 2 0 sin 2 ~) sin 2 0 sin ~b cos ~b, 

16C1 sin3 0 cos  0 s in  ~ COS 2 q~, AI2/G = A21/G = 15A 

16C1 sin3 0 cos 0 sin 2 ~bcos ~b, A31/G = A13/G = 15A 

2 16C2 sin4 0 sin2 q~cos 2 ~b, A23//G = A32/G = 5 + 15A 

1 O ~  

3 
/ /  

' [')',.i 
/ .  

2 

Figure 22. Definition of the orientation angles 0 and 4~ used by Cox (1970, 1971) and Okagawa 
e~ al. (1973). 

[B.21] 

* This is perhaps most simply demonstrated by comparing equations [2.67] and [2.657 of Brenner ~1072a), 
defining the A~ in general, with equation [2.20] of Cox & Brenner (1971), defining the ~ij in general. 
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wherein 

C 1 =  4tin 2r v + K)' [B.22] 

with K the numerical constant defined in [3.39]. In obtaining lB.21] we have utilized [3.42]. 
These expressions for Ais apply to both pointed and blunt particles. 

With use of [2.35] and [B.7], equation [3.4] may be written out in terms of the space-fixed 
axes of figure 22 by observing that the components of the unit vector e in this system are 

el = cos 0, e 2 = sin 0 cos ~b, e 3 = sin 0 sin ~b. [B.23] 

In this manner one obtains the expressions 

Am 1/G = Q2(1 - 3 cos 2 0) sin 2 0 sin q~ cos ~b, 

A22/G = Q2(1 - 3 sin 2 0 cos 2 ~b) sin 2 0 sin ~b cos ~b + 2Q~ sin 2 0 sin ~b cos ~b, 

2 ° A33/G = Q2(1 - 3 sin 2 0 sin2~b) sin 2 0 sin ~b cos $ + Qa sin2 0 sin $ cos $, 

A 12/G = A21/G = - 3Q2 sin 3 0 cos 0 sin ~b cos 2 ~b + Q~ sin 0 cos 0 sin ~b, 

A31/G = A13/G = - 3Q2 sin 3 0 cos 0 sin 2 $ cos ~b + Q~ sin 0 cos 0 cos ¢, 

A23/G = Aa2/G = QI - 3Q2 sin* 0 sin 2 ~bcos 2 ~b + Q~ sin 2 0. [B.24] 

Term-by-term comparison of these general expressions with lB.21] shows that all six of 
these relations are satisfied by the choices 

2 16C l 
Q' = 5'  Q2 = 45A'  Q] = 0, [B.25] 

leading to the results cited in [3.33]-[3.35]. Though derived by considering a simple shearing 
flow, the material constants [B.25] apply; of course, to any type of homogeneous shearing 
flow. 

APPENDIX C 

Material  constants for  dumbbells 

Wakiya (197 l) considers a dumbbell (see figure 2), whose center O lies at the origin of the 
undisturbed simple shearing flow 

v ~° = i lGx3 ,  [C.I] 

where (xl, x2, x3) constitute a system of Cartesian axes fixed in space (origin O), (i 1, i 2 ,  i 3 )  

being the corresponding unit vectors, and G the shear rate. From [2.4] and [2.2] we have 
for this flow that 

to = i2G/2, [C.23 
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and 

s = ( i3i  1 + i z i 3 ) G / 2 .  [C .3 ]  

According to [2.10] and [2.19a] the couple exerted by the fluid on the dumbbell is 

L = /ao[ri~ .(m - f~) + ~:s]. [C.4] 

Let (i t , i 2, i3) be an orthonormal triad of right-handed unit vectors locked into the particle, 
with i 3 = e lying along the symmetry axis of the dumbbell. It therefore follows from [2.21] 
and [2.12b] that, since 

Om = 6,,3 (m = 1,2,3} [C.5] 

are the components of e in the body coordinates, then 

'K = 167tc3[i3i3rK,, + {ill 1 + i2 i2)rK±],  [C.6] 

in which it has been noted that 

v~ = 8rw3/3 [c.73 

is the volume of the dumbbell. In addition, [2.12c] and [2.23] in conjunction with [C.5] 
show that the triadic $ may be represented in body coordinates as 

$ = -- 16rtc3z(ili2i3 + ili3i 2 - -  i 2 i t i  3 - -  i2i3il). [C.8] 

In terms of body-fixed'coordinates we may write 

= ] 1 ~ 1  "+" ] 2 ~ 2  "~ ] 3 ~ 3  , [C.9] 

and 

L = i l l  1 + i z L  2 + i 3 L  3 . If.10] 

Thus, upon performing the indicated dot multiplications in [C.4], there is obtained 

L l = - -16r t#oC3[zG(12n3  + 13n2) + ( ~ ,  - ½m I G)rK±],  [C.1 la] 

L2  = 167t~toC3[zG(l ln3 + 13nl)  - (Q2 - ½ m 2 G ) " K l ] ,  [C.I lb! 

L3 16g/,toC3(~3 1 , [C.I lc] --  _ _ ~ m 3 G  ) K H , 

in which, for j = 1,2, 3, 

l j = i j ' i  1 , Dlj = i j  ° i 2 , /'/j = ij  " i 3 

are the direction cosines between the body-fixed and space-fixed Cartesian axes. 
From equation [W-21],* Wakiya 11971) gives the relations 

L1  = - 16rC#o c2 / t -  I ; d~, [C.13a] 

[C.12a, b,c] 

* In m a k i n g  reference to specific equa t ions  appea r ing  in Wakiya ' s  (1971) first paper ,  we will prefix the equa t ion  
n u m b e r  by the letter W. For  example ,  equa t ion  [W-21] refers to e q u a t i o n [ 2 1 ]  of Wak iya  (1971). 
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I :  L2 = 16n~oc 2 ,41(d~, [C.13b] 

:o o L'a = 81tldo c2 (Bo I + Bo+~l(d(, • [C.13c] 

where, from equation [W-17], 

"~1 = 2C(fl Y1 - gl ]:2), 

A-1 = 2c(f - I Y1 - g-IY2), 

in which, from equation [W-15], 

f l  = Gllna - ~ 2 ,  

gl  = Giant  + ~2, 

In addition, according to equation [W-16], 

f - i  = G12n3 + ~1, 
g - 1  = Glan2 - ~ 1 .  

Bo  I + Bo +1 = - -2c [G( l l n  2 - 12nl) + 2~3]((1 - F), 

wherein* 

F = tanh (. 

On substituting these results into [C.13], it follows that Wakiya's formulas for the body- 
fixed components of the couple are 

~-'1 = -321tltoc3[G(12na a2 - 13n2 b2) + ~1( a2 -t- b2)], 

E 2 = 32rCltoc3[G(lln3 a2 - 13nlb 2) - -  ~ 2 ( a  2 + b2)], 

L3 = - 32n~oc a[½G(II n2 - 12nl) + ~3] ~2(1 - tanh 0 d~, 

in which a 2 and b 2 are numerical constants given by equation [W-23] as 

a2 = YI( d(, b2 = Y2( d(. 

Inasmuch as the direction cosines are connected via the identities 

ml = lan 2 -  12n3, 

m2 = !1n3 - lan~, 

m a = 12n i - l ln2 ,  

[C.14a] 

[C.14b] 

EC.14c] 

[C.15a, b] 

[C.16a] 

[C. 6b] 

EC.16c] 

* In contrast with the •other formulas, which apply for all values of the aspect ratio rp, this expressions for F 
applies only to the case where the sphere~ are in contact (r  v = 1). We shall carry along this value of F in the,subse- 
quent analysis, and later give the more general result for Es for arbitrary rp, kindly furnished to me by Professor 
Wakiya in private correspondence. 
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it follows that [C.11] may be written in the form 

f-1 = - 1 6 x # o c 3 [ G { 1 2 n 3 ( ½ " K z  + z) - 13n2(½"K ± - r)} + ~ ' K ~ ] ,  [C.17a] 

L 2  = 1 6 n l ~ o c 3 [ G { l l n 3 ( ½ ' K ±  + z) - 13n~(½'K ± - z)} - ~2"K ±], [C.17b] 

f~3 - 1 6 n ~ o C 3 [ ½ G ( l l n 2 - 1 2 n l ) +  3]K,, [C.I 7cl 

Comparison of the first two of these relations with [C.14a] and [C.14b] immediately yields 

rK± = 2 ( a  2 + b 2 ) ,  [ C . 1 8 ]  

and 

Z = a 2 - -  b 2. [C.19] 

Similarly, comparison of [C.14c] with [C.17c] yields (cf. footnote on page 315/ 

'K, = 2  (2(1 - t a n h ( ) d (  f o r r p =  1, [C.20] 

In the more general case, where rp ¢ 1, Professor Wakiya has kindly furnished me l in 
private correspondence) with the following formula, derived by him: 

'K,, = 2sinh 3fl ~ n(n  + 1)[1 - tanh(n +½)fl] forrp ¢ 1, [(7.21] 
n = l  

in which/3 is the bipolar coordinate parameter, 

fl = cosh-1 rp. [C.22] 

With use of [2.25], we find from [C.19] that 

N = ( 6 /5 ) (a  2 - b2). [C.23] 

The B value obtained from [2.28a] is 

in which 

B = ~ ,  [C.24] 

r e = a / b  [C.25] 

is, by definition (cf. [2.3o]), the equivalent axis ratio of the dumbbell. From the numerical 
values of a and b tabulated in table 2, it is clear that r e >_ 1 for all rp, so that 0 < B ~ 1 
for all possible values of the dumbbell aspect ratio. 

It remains yet to determine the material constants Q1,Q2,(23 for the dumbbell. In 
polyadic notation, [3.4] is equivalent to the relation 

A = Q°:s. [C.26] 

The dyadic s is given for Wakiya's simple shearing flow by [C.3] in space-fixed coordinates. 
In body coordinates the tetradic Q° is represented by the expression 

QO = ilij ikiz~Ojkl (summation convention), [C.27] 
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in which 0.Tj~: is given generally for a body of revolution by the right-hand side of [2.35] in 
which e,, is replaced by £,,, = fire3. 

Upon writing, in body coordinates, 

one obtains 

A = ikil']kt (summation convention), [C.28] 

Explicitly, 

"]ij - -o  = GlkntQij u . [C.29] 

"]11 = G[( l ln l  - 12n2)Ql - 13n3(Q1 - Q2)], [C.30a] 

"~22 = G[(12n2 - l l n l ) Q l  - 13n3(Q1 - Q2)], [C.30b] 

`]33 = 2Gl3n3(Q1 - Q2), [C.30c] 

,]12 = ']21 = G(lln2 + 12nl)Ql ,  [C.30d] 

']23 = ']32 = G(12n3 + 13n2)(Ql + Q~), [C.30e] 

/131 = ' ] 1 3  ~--- G(13nl + lxn3)(Q1 + Q~). [C.30f] 

In the first two of these expressions we have utilized the identity 

l ln l  + 12n 2 + lan 3 = O. 

Note that [C.30] correctly accords with the relation 

-'/11 + `]22 + ,]33 = 0. [C.31] 

In order to obtain Wakiya's expressions for the `]0, we note that the stresslet A appearing 
in [2.11] is defined generally in equation [2.40] of Brenner (1972a) by the relation 

15 
rSp-  3 = - ~ / ~ o  VpA : r r  [C.32] 

(subject to the conditions A~j = Aji and A, = 0), in which r is the position vector measured 
from the origin O ;  r = Irl, a n d  p _ 3  is the term of O ( r  - 3 )  in the expansion of the pressure 
field p defined in [2.6a]. The volume Vp of the dumbbell is given by [C.7]. Wakiya (1971 ; 
equation [W-27]) writes 

rSp_3 = --2#oQ, [C.33] 

in which Q is the function 

Q = ( L -  M1)~ 2 + (L + M1)~ 2 - 2L~ ] - S M _ . I . ~ I . ~  2 - 2NI~aX1 - 2N_ 1~2.~ 3. 

Thus, putting 

r = i 1 ~  1 + ]2.~2 "Jc i ; . ~  3 

[C.34] 
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in [C.32], utilizing [C.7] and [C.28], and comparing the resulting expression with [C.33]. 
yields 

and 

5 C 3 A l l  = L - M 1 ,  5c3 fI22 = L + M1,  5C3/~33 ~--- - 2 L ,  [C.35a, b,c] 

5C3/ t12  = 5C3.'~21 -~- --  M _  1, [C.35d~ 

5C3/ t23  = 5 c 3 A 3 2  = --  N _ 1, [ C  35e] 

5C3,-431 = 5 c 3 A 1 3  ~--- N 1 . [C,35f] 

These relations accord with [C.31]. In the above, equations [W-29], [W-15] and [W-22] 
combine to give 

L = - c 3 G l 3 n 3 e o  , [C.36a] 

M 1 = - c 3 G ( l l n l  - 12n2)e 2, [C.36b] 

M _  1 = - c 3 G ( l l n 2  + 12n1)e2, [C.36c] 

N 1  = - 2 c 3 [ ( G l l n 3  - ~2)ell  + (G l3n l  + ~2)e12] ,  [C.36d] 

N _  1 = - 2 c 3 [ ( G 1 2 n 3  + ~ 1 ) e l l  + (G13n2 - ~t)e12], [C.36e] 

in which eo, e2, e l l ,  e12 are numerical constants tabulated by Wakiya (1971) as a function 
of r v, and (el. equation [W-22]) 

(a 2 + b2)~1 = -G(lzn3 a2 - 13nzb2), [C.37a] 

(a  2 + b 2 ) ~ 2  = G(lan3 a2 -- 13nlbZ}, [C.37b 1 

~3 = -X2G(lln2 - 12ni), [C.37cl 

give the angular velocity components (~1, ~z, ~3) resolved along body axes for a couple- 
free dumbbell (cf. [C.14] with f~l = L,2 = L3 = 0}. 

Substitution of [C.36a, b] into [C.35a, b, c] yields 

A l l  = I G [ ( l l n l  - lzn2)e2 - 13n3eo], [C.38a] 

A22 = ½G[(12n2 - l i n t ) e 2  - 13n3eo], [C.38b3 

433 = 1G[213n3eo].  [C.38c] 

Comparison of [C.38a, b] with [C.30a, b] then gives Q = ~e2 and Q~ - Q2 = ½eo. Simi- 
larly, comparison of [C.38c] with [C.30c] also yields Q1 - Q2 = ~eo. Consequently, we 
have that 

Q1 = ~e2, [C.393 

and 

Q2 = ~(e2 - eo). [C.40] 
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Introduction of [C.36c] into [C.35d] gives 

A12 = 421 = ~G(lln 2 + 12nl)e2, 

whereupon comparison with [C.30d] thenshows that Q~ = ~te 2, in agreement with [C.39]. 
Substitution of [C.37b] into [C.36d] yields 

N 1 = -c3G(13nl  + l lna)el ,  

in which (cf. equation [W-34]) el is the. numerical constant 

z det 2(ell + r~elz) 
el = 2 ' [C.41] 

r i + l  

with r e given by [C.25]. Use of this expression for N~ in [C.35f] then makes 

A31 = A13 = !sG(13n1 + l lna)el .  [C.42] 

Similarly, substitution of [C.37a] into [C.36e] gives 

N _  1 = -c3G(lan2 + 12na)el, 

whence, from [C.35e], 

"423 = "432 = IG(12n3 + lan2)el. [C.43] 

Comparison of [C.42] with [C.30f], as well as [C.43] with [C.30e], furnishes the relation 

Q~ = ~(el - e2), [C.44] 

which satisfies both pairs of relations. 
The Qa value may now be obtained from-[2.36] by employing the expressions for B and 

N in [C.24] and [C.23], respectively. In this manner there is obtained 

Q3 = ~_el - e2 + 3b 2 ~ -~ ~- l"  [12.45] 

It remains only to show that Wakiya's values for "K, in [C.20] and [C.21] agree with the 
accepted values (Cox & Brenner 1967) for this material constant. 

Consider first the case where rp = 1. Using the definitions of the hyperbolic trigonometric 
functions in terms of exponentials, it is easily shown that 

= 2 fo (2e-(  sech ( d(. "K,, 

Now, Erd61yi et al. (1953) give the relation 

fo o 2 s- 1 : -  l e - '  sech t dt -- (1 - 21 -~)F(s)~(s), 

valid for s > 0. Here, ((s)is Riemann's zeta function, and F(s) is the gamma function, which 
for s an integer is r (s )  = ( s ,  1)! Choosing s = 3 then eventually gives 

"K, = ¼~(3) = 0.90154, [C.46] 
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in accord with the results of Cox & Brenner (1967) for the tangent-sphere dumbbell. 
In the case where rp :/: 1, Wakiya's result [C.21] must be reconciled with the formula of 

Cox & Brenner (1967) for this case, cited in the last footnote on page 219. To effect this 
reconciliation, we note from the definition of the hyperbolic trigonometric functions that 

2x 
1 - tanh (n + ½)fl . . . . . . .  

l + x  

where x = e -~2"÷ ~ .  Use of the binomial expansion for (1 + x)-~ (Ixl < It then eventually 
gives 

t) ~ )m+ 1 e-t2.+ llm/~ 1 - t a n h ( n +  5 / 3  = 2 ( - 1  
m = l  

whence, in [C.21], 

i n(n + 1 ) [ 1 -  tanh(n + ½)fl] = 2  ~ i ( - 1 ) ' + ' n ( n  + l}e-12"+'ima 
n = l  n = l  m : = l  

The absolute convergence properties of this double sum are such that one can interchange 
the order of summation to obtain 

"K N = 4sinh3fl ~ ( - 1 )  "+l  ~ n ( n +  l)e -'2n+1'"° [C.47] 
m ~  I n =  1 

Now, for fixed positive values of m and [L 

8 e  3too x; 

c°sech3 mfl - (1 - e-2m/J) 3 = 4 E n(n + 1)e -12"+1"a 
n = l  

where we have employed the binomial expansion of (1 - y ) -3 (y  = e-z,./~: lYq < 1). Com- 
parison with [C.47] then yields 

"K,, = sinh 3fl ~ ( - 1 )  m+lcosech 3rnfl, 
m = l  

in agreement with the formula of Cox & Brenner (1967). quoted in the last footnote on 
page 219. 

.APPENDIX D 

Q tensor.for a "'non-interacting" dumbbell 

As pointed out in the footnote on page 221, the Q;~k~ tensor given in [3.67] is not the same 
as the comparable tensor 

Q'ijkl = (6jkeiet -f- 6ikejet -- 26ijeket)Q, [D.I] 

given by Brenner (1972a) for a "non-interacting" dumbbell. The apparent discrepancy 
stems from the fact that Q'ijkt does not satisfy the (arbitrary) symmetry condition [2.13c] nor 
the condition [2.17a]. 
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To put [D.I] into "standard" form we note that since s ~  = sa and s~ -- 0, then the tensor 

Q~ud'r" ( , , _ = ½ Ql~u + Q,~,k) ~6ue, ejQ [D.2] 

possesses the property that 

Q;j~tska = Qij~:u = Qui:kl. [D.3] 

From the point of view of [2.11] for the stresslet Aij, the tensors Qi~ and Qiju are therefore 
physically equivalent. 

Insertion of [D.I] into [D.2] yields 

Qou = [~jkeie~ + t~ilejek + t~ikejet + t~jteiek -- ~(t~oekel + ~kteiej)]½Q, [D.4] 

in agreement with [3.67] to dominant terms in rp. 

APPENDIX E 

Evaluation of  the h-integral defined in [6.14] 

Write 

_- 2 j ,  [E.1] h 

where J(2) is the integral portion of [6.14]. In this integral set 2q~ = r/, whence 

J = ~ sin 2 0 G(O) sin 0 d0, [E.2] 

in which 

G(O) = exp (~ cos p?) d~/, [E.3] 
= 0  

with a(0) = -¼2 sin 2 0. As is readily shown, 

G(O) = 2 exp (~ cos ~/) d r /+  exp ( -  ~ cos ~) d~/ • 

But (McLachlan 1955) 

f ~ e x p  + ~, cos d~ = ~Io(_+ ~), ( ~) 

where Io is the modified Ikssel  function of order zero. Since I o is an even function of its 
argument, 

G = 4 ~ I o ( l ~ [ ) ,  
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Consequent ly ,  f rom [E.2], 

J = 27[ sin 2 0 Io(¼121 sin 2 O/sin 0 dO 

f 
r~/2 

= 4rt sin 2 0 lo(1121 sin 2 0) sin 0 dO. 
• v 0 

N o w  set sin 2 0 = cos x. This is equivalent  to cos 0 = 21/2 sin (x/2). Differentiat ion of both  

sides of the latter then gives sin 0 d0 = - 2 - ~ / 2  cos (x/2)dx.  Therefore,  

/.n/2 
47[ | cos(½x) cos x Io(¼121 cos x) dx. J = ~-r~ x=o  

Use of the t r igonomet r ic  identity 

c o s  (½x) c o s  x = ½Ecos (½x) + c o s  13x)], 

yields 

in which 

and 

2 ~  
J = ~--i-~(J1 + ,I2), 

f0  ~/2 J l = cos (½x)lo(¼1)-I cos x) dx, 

f 
n l 2  

J2 = cos (3x)Io(¼121 cos x) dx. 
~'O 

Each of these Ji integrals may  now be evaluated by appl icat ion of the general theorem 

(Gradsh teyn  & Ryzhik 1965) 

fO n/2 7[ 
cos (2#x) I2~(2y cos x) dx = ~ I v + ,(3') Iv _ u(Y), 

valid for v > - 1/2, by put t ing v = 0, y = 121/8, and successively choosing # = 1/4 and 3/4. 

This procedure  ul t imately leads to 

J = 2-1/27t2111/,(~121)I_ 1/,(~121) + I3/,(~121)I-3/,(~121)]. 

Use of this relation and [6.6] in [E. 1] then furnishes the expression for h appear ing  in [6.16]. 

A P P E N D I X  F 

Estimates of  the a, b and c coefficients in [9.13] 

Stewart-S¢~rensen (1972) estimate: 

Equat ions  .[9.16] indicate a P -  1/3 dependence  of the three viscometr ic  functions for a 
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simple shearing flow at large P6clet numbers. This theoretical fact accords with the empirical 
numerical findings of Stewart & Sorensen (1972) for dumbbells of large aspect ratio. In 
turn, this information maybe  utilized in an indirect way to obtain estimates for the a, b, c 
coefficients in [9.13]. 

These authors, in effect, solved [8.19]-[8.21] with B = 1 (ef. [8.23]) by a numerical scheme, 
these results then being utilized to implicitly compute the three goniometric factors, 
<sin 2 0), (sin 2 0 cos 24~), (sin 2 0 sin 24~), at various P6clet numbers, up to P -- 600. These, 
in turn, were employed to calculate values of the three viseometric functions in [8.16a]- 
[8.16c]. At the larger P6clet numbers, they found by inspection that their numerical results 
could be accurately fitted by the equations 

~o~-T~ = 0.678 , [F.la] 

nokT22 = 0.93 [6] ' [F.lb] 

nokr2----~h = 1.20 ~ [F.Ic] 

If equations [9.13] are substituted into [8.16], there is obtained, for P >> 1, 

nokTAh ~ -~ , [F.2a] 

nokr2~ ,,, (3a - b)6~-i~ 2 ~ 1~- ] , [F.2b] 

0 3 [ 1 - h I[P1-4/3 
nokT2~ "" c - ~ [ 1 - - - : ~ ] [ - 6 ]  " [F.2c] 

Comparison of these with IF.I] yields 

b - a = (0.678)(2)61/3/3 = 0.822, 

3a - b = (0.93)(2)61/3/3 = 1.125, 

c = (1.20)61/3/3 = 0.727. 

The numerical values of the coefficients obtained in this manner are 

a = 0.974, b = 1.796, c = 0.727. IF.3] 

Schwarz (1956) estimate: 

Schwarz defines three functions FI(P ), F2(P), F3(P), which in our notation (Schwarz's 
symbol a is ~ luivalent  to our P) are equivalent to 

F 1 = ] ( s i n  2 0 )  - 1, 

F2 = ~<si,n 2 0 c o s  2~;b), 

J.M.F., Vol. I, No. 2 I 
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F3 = 3 ( s i n  2 0 s i n  2 4~5. 

For B near unity, Schwarz demonstrates, by means of an approximate procedure for 
determining the orientational moments of [8.19]--[8.21], that 

F1 ~ 1 

F 2 ~ - B  ~ p1 /3  + - - -  ' 

(,06 7t F 3 ~ B p1 /3  - - -  " 

These lead to the values 

(sin z 0) ~ 1, 

122 0.57 
(sin 2 0cos 2th) ~ - 1 + pl~3 p 

0.71 0.45 
(sin z 0 sin 2¢h7 -~ p1:3 p 

and thence to the values of a, b, c noted in [9.16]. Because of the approximate nature of 
Schwarz's scheme for obtaining the various moments, these values of a, b and c must be 
regarded as approximations, rather than rigorous estimates. 

A P P E N D I X  G 

Energy dissipation 

Additional energy dissipation rate. Consider an isolated solid particle of arbitrary shape 
undergoing translational and rotational motion in a fluid subject to a homogeneous 
shearing flow at infinity. The fluid motion will be assumed to be governed by the quasistatic 
creeping motion equations [2.6]. Let Sp denote the surface of the particle, and S~ the 
surface of a large spherical envelope of fluid containing the particle in its interior. In view of 
[2.7], [2.8] and [2.5], the boundary conditions are 

and 

v = U +  ~ x r o n S , ,  [G.1] 

v = v ° ~ - = v ° +  to x r + s . r  on So~, [G.2] 

with r the position vector measured from the origin O. 
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In creeping flow the time rate E at which mechanical energy is being dissipated in the 
fluid region external to the particle is equal to the rate at which the stresses acting over the 
surfaces bounding the fluid are doing work upon it. Hence, 

where 

t '  
E =  - |  d S . P . v ,  

Js p +S~o 
[G.3] 

P = - I p  +/ao[VV + (Vv)*] [G.4] 

is the pressure tensor arising from the motion [2.6] satisfying boundary conditions [G.1] 
and [G.2]. The directed element of surface area dS is drawn parallel to the inner normal to 
the fluid volume bounded internally by Sp and externally by S~o. Thus, on Sp, dS is directed 
outward from the particle, into the fluid, whereas on S~o, dS is directed inward, towards 
the particle. 

In the absence of the particle, the undisturbed rate of mechanical energy dissipation 
resulting from the homogeneous shear flow is likewise 

E~ = - I_ d S . P ~ . v  ~, [G.5] 
¢ S  a~ 

in which p~o = 2#oS is the undisturbed pressure tensor. 
The additional rate E + at which mechanical energy is dissipated in the fluid due to the 

presence of the suspended particle in the shearing flow is, therefore, 

E + = E - E  ®. [G.6] 

Since v = v °° on So,  then, with the aid of the reciprocal theorem (Brenner 1963) 

fs d S . P - v  ® = | d S . P ~ .  
/ ,  

V, 

p+S~ "]Sp+Soo 

and the relation 

fs dS.P®.v = 0, [G.7] 
p 

we eventually obtain (Brenner 1958) 

E+ = fs dS .  P . ( v  ~ - v). [G.8] 
p 

Equation [G.7] may be proved by utilizing the boundary condition [Q.1] to obtain 

fs dS.P~.v = F ~ . U  + L "° . f l ,  [G.9] 
p 

in which 

p p 
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Since P~ possesses no singularities in the interior Vp of the volume presently occupied by 
the particle, one may employ the divergence theorem to obtain 

and 

F~ = fv V ' P ~ d V = 0 "  
p 

L~= -Xs dS'(P~ x r)= -f t  V'(P~ xr)dV= -fv (V'P~txrdV=0' 
p zp p 

The vanishing of these volume integrals is a consequence of the relation 

V . P  ~ = 0. 

Equation [G.9] then shows that the integral in question is zero, thereby demonstrating 
the validity of [G.7]. 

Positivity of the additional energy dissipation rate. It will now be demonstrated that the 
additional rate of mechanical energy dissipation satisfies the inequality, 

E + >_ 2poVps:s >_ 0, [G.10] 

in which the equality sign holds only if, simultaneously, the following conditions obtain: 

U = v " ,  f l = o ,  s = 0 ,  [G.11a, b,c] 

in which case E + = 0. 
In order to prove this relation, define the "additional" velocity and stress fields, 

v + = v -  v ~, P+ = P -  P~,  [G.12a, b] 

arising from the presence of the particle in the undisturbed shear flow (v ~, P~). With the 
directed elements of surface area on Sp and So defined in the manner described following 
[G.4], consider the integral 

I + = - f  d S . P  + . v  +. [G.13] 
Js p+S-~ 

It will now be demonstrated that 

I + _> 0, [G.14] 

in which the equality sign applies only if v ÷ = 0 everywhere in the fluid volume V I bounded 
internally by Sp and externally by S~; that is, only if v = v ~ for all r e V~. From [G.1] and 
[G.2] this occurs if, and only if, conditions [G.11] are each satisfied. 

To prove [G.14] we note that by the divergence theorem, [G.13] can be converted into 

the volume integral 

I + = f V . ( P  +.v+)dV.  [G.15] 
J v  I 
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By identity, in Cartesian tensor notation, 

+ + p+  v + p + v  +. V ' ( P + ' v + )  = (PijvJ ),~ = ~,~ ~ + o j,i 

However, in creeping flow, Pij.i = 0. Moreover, P~/.i = 0. Consequently, from [G.12b], 

P.+.. = 0. IJ,l 

Furthermore, 

e ~  = - ~ , j p +  + ,o(Vj+,, + v,.+~) 
Since 6~jv~ = v ?.,,, = 0 in consequence of incompressibility, we thereby obtain 

+ + 
V. (P+ .  v +) = IZo(Vj4i + vi j )vj . i .  

The tensor v. +. may be decomposed into symmetric and antisymmetric parts as follows: 
J,I 

~+ ½(~;., + v,.~) + ½(~;, j., = - v,,~). 

However, it is readily demonstrated that 

(vj+i + + + v,.j)(vj., - v,.+A = O, 

whereupon we find that 

V . ( P + . v  + ) =  I + + 2 ~#o(Vj.~ + % )  • 

Since/~o > 0, it may be concluded that 

V . ( P + . v  + ) > 0  for a l l r e V  I, [G.16] 

wherein equality holds only if 

v + . v .+ ~., + ,.~ = 0. [G.17] 

Substitution of [G.16] into [G.15] yields the inequality [G.14], the equality sign applying if, 
and only if, [G.17] holds at each point r e V I. Equation [G.17] corresponds to a rigid-body 
motion for which 

v + = a + b × r  for all r ~ VI, 

with a and b constant vectors. However, [G.2] requires that 

v + = v - v  ~ - - , 0  a s l r l ~ o o .  

Therefore, a and b must be identically zero, whence the equality sign in [G,14] applies only if 

v + = 0  for a l l r~Vs.  [G.18] 

However, from [G.1], [G.2] and [G.12a], on the particle surface, v + is required to satisfy 
the boundary condition 

v ÷ = ( U - v  ° ) + ( f l - o ~ ) × r - s . r  onSp. 

Thus, [G.18] will be true if, and only if, conditions [G.11] are each satisfied. 



328 H O W A R D  B R E N N E R  

We have therefore succeeded in proving that [G.14] is valid, and that the equals sign 
holds only if conditions [G.1 la, b, c] simultaneously obtain. 

Equations [G.13], [G.14] and [G.12] combine to give 

fs  d S . ( P  - P~) . (v  ~ - v) _> 0. 
• p + S , ,  

Since v ~' - v = 0 on S .... the integral over S~ vanishes, whereupon the above inequality 
reduces to 

f ,  d S ' P ' ( v ~  - v ) >  ~s d S ' P ° ~ ' v ° ~ -  fs d S ' P ~ ' v '  
p p p 

Comparison with [G.8] reveals that the integral appearing on the left is E +. Moreover, the 
last integral on the right is zero in consequence of [G.7]. Hence, 

E + >_ f d S ' P  ~ ' v  ~, 
J s  p 

wherein the equality sign applies only if conditions [G.11] are met. By the divergence 
theorem, the integral on the right may be converted into a volume integral over the volume 
Vp of fluid presently occupied by the particle, yielding 

ls dS.P~.v~= fv V.(P~.v~)dV 
p p 

As in the derivation following [G.15], it is readily shown that 

V "  ( p ~  • vOO) = ~po(l,j, 1 1  ,6 + l,i~)2. = ½Po(2Sij)2 =_ 2#oS:S ' 

which is constant throughout the volume Vp. In this manner we find that 

E + >- 2#oVps:s. [G.19] 

Inasmuch as s:s > 0 (with equality holding only when s = 0), we may conclude from 
[G.19] that 

E + > 2/aoV~s:s > 0 unless [G.11] holds, [G,20a] 

and that 

E ÷ = 0 when [G.11] holds. [G.20b] 

From [2.9] to [2.113 it is clear that the conditions [G.11] arise when the force, torque and 
stresslet exerted by the fluid on the particle are identically zero, i.e. 

F = 0 ,  L = 0 ,  A = 0 .  [G.21a, b,c] 

Inequalities imposed on material constants. Introduction into [G.8] of [G.1] and the 
expression for v ~ given in [G.2], yields 

E+ = F.(v° - UI + L . ( ~  - , )  + (~ s d S . P r ) : s ,  [G.22] 
p 
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in which 

F=fs d S . P ,  L=fs r x ( d S . P ) ,  [G.23a, b] 
P P 

are, respectively, the hydrodynamic force and torque (about O) exerted by the fluid on the 
particle. Now, the general definition of the symmetric, traceless, dyadic "stresslet" A 
appearing in [2.11] is (Brenner 1972a) 

A = g ( r d S . P  + dS .Pr )  - ~I r . ( d S . P )  
p ~Sp  

[G.24] 

Since the undisturbed rate of strain dyadic s is symmetric and traceless (i.e. l : s  = 0), then 
[G.22] may be written as 

E + = F . (v  ° - U) + L. ( to  - fl) + 51aoVpA:s,  [G.25a] 

or, equivalently, in Cartesian tensor notation, 

E + = Fi(v ° - Ui) + L~(coi - ~ i )  + 51~oVpA~sij. [G.25b] 

The force, torque and stresslet required in the above expression are given generally by 
[2.9]-[2. I 1]. In view of the inequalities [G.20], the material tensors appearing in [2.9]-E2.11] 
must therefore satisfy certain inequalities. In the context of present applications, attention 
will be directed only to those material constants which are relevant to axisymmetric 
particles. 

For centrally symmetric bodies, [2.9]-[2.11] adopt the following simpler forms at the 
center of symmetry of the particle: 

F, =  otg, tv'; - u j ) ,  

L,  = 6lzoVp['K,j(t, oj - [lj)  + "C,jkSjk], 

in which [2.12b, c] and [2.191 have been employed. Substitution of these expressions into 
[G.25b] and subsequent use of [2.18] yields 

E + = #JgO(v~  - U~)(v~ - U j ) +  6 g o V ; K o { c o  , - fl,)(toj - f~j) 

+ lO/ao VpNijkSij(c°k - f~k) q- 5flo VpQijklSijSkl, [G.26] 

in which [2.18] has been utilized. 
Since the velocity parameters v ° - U, to - II  and s may be independently chosen, the 

non-negative nature of the quantity E + - 2#oVps.,.s ~ requires that 

tKo(v'; - U~)(v~ - U~) > 0 for v~, - Uk ~ 0, 

"K,j(toi - fl~)(toj - f~j) > 0 for Ok -- ~ # 0, 

QoklSOSkz -- ]s~.s~. > 0 for s~, # 0, 

[G.27] 

[G.28] 

[G.29] 
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6"Kij((oi - f2 i ) (% - f~j) + lONijkSifl(ot -- ~k} 

+ 5Q,jktSijSkl -- 2S,,,S,,, > 0 for (')k -- flk # 0 and );qr # 0. !G.30] 

Inequalities [G.27] and [G.28], which apply, in fact, for bodies of any shape, require that 
the 3 x 3 matrices II'KII and II'KIt be positive-definite forms. These conditions are well known 
(Brenner 1964b). For axisymmetric bodies they lead to the conclusion that 

'/(,, > 0, '/£± > 0, !G.31a, b ! 

and 

"K, > 0. rK~ > 0, IG.32a, b: 

as follows from [2.201 and [2.21] by noting that in a system of body-fixed coordinates O.~ 
(i = 1, 2, 3) with 0 2 3  as the symmetry axis, 

fK 01 
0 0 

II'KJj = 0 'K~ o 

0 'K  

and 

rKlO 0 0 , 
II'KII= 0 rK l 0 

0 rK,, 

in which it has been noted that the unit orientational vector e in this body-fixed system 
possesses the components 

0,, = 3,, 3 (m = 1,2,3). [G.33~ 

Equations [G,31] and [G.32] are all satisfied by each of the bodies whose properties are 
explicitly tabulated in Section 3. 

By identity, 

SmnSmn = l{•ik6il 4- 6il6jk)SijSkl, [G 34! 

whence [G.29] may be written in the form 

[Qijkl -- ½(~ik6il 4- 6itDjkl]sijSkt > 0 for Sqr ¢ 0. [G.35] 

By means of [G.33] the Qijkt tensor for axisymmetric particles, given by [2.24], may be written 
in body coordinates. Inequality [G.35] therefore requires that 

0 < [ Q , j k , - '  - - " ~ ~ '  - , - _ ,  1 . . . .  ~(~ikOjl-kOitOjk)].v, i f i k l - - J + 4 ( Q 1 - ~ ) s  ~ 2 + 4 ( Q 1 -  ¢ 4- Q3)(s  73 4- ,,,;~ i 1. [G.36~ 

in which 

J = [41Q1 - -~)- 3Q2]~1 + 212(Q, - } ) -  3Qz].q ~g22 + [4(Q, - ~ ) -  3Q21,i:222 

4 1 Q , -  ½) -3Q2 ,  2(Ql - ½)-  3Q2 ,~'~ 
Irish,-~:2211 2(Q, ½) 3Qz, 4tQ~ -~) 3Qz -~22H. (G.37] 
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In arriving at these relations, the identities 

'~ij = "~ji' 

and 

331 

~ [G.38] 

J" ~ 6['K±W~ + ~NW2g3,  + ~ ( Q ,  - s 1 + Qa)g],] > 0. 

and 

'~11 "{- '~22 "~ "~33 = 0 [G.39] 

have been utilized, the latter to eliminate .~33. Since the five strain components in the 
body-fixed system, g, 1, g22, .~2, '~23 and ga,, may be chosen independently of one another, 
the inequality [G.36] requires that 

QI > 1/5, [G.40] 

Qi + Q3 > 1/5, [G.41] 

and J > 0 for gij # 0. The latter requires that the 2 x 2 matrix in [G.37] be a positive- 
definite form, i.e. 

4(0,  - ~) - 3Q 2 ~" 0, 

and, upon forming the determinant of the matrix, 

[4(Q1 - 4) - 3Q2] 2 > [2(Q1 - 4) - 3Qe] 2, 

which are, respectively, equivalent to 

~(Q1 - 4) > Q2, 

and, upon squaring the terms enclosed in square brackets, 

Q1 - ~ > Q2. [G.42] 

In view of [G.40] we have that {(Q1 " 4) > Q~ - 4, whence it follows that the equation 
immediately preceding [G.42] will automatically be satisfied if [G.42] is itself satisfied. 

For an axially symmetric body we find with use of [2.21], [2.22] and [2.24], along with 
[G.33], that, in body coordinates, the inequality [G.30] requires that 

r 2 0 < 6 # o v p [ r ± ( W  , + W~) + "K,,W23] + 20UoWNtW2g3, - W, g23 ) 

~)S12 + 4(Q, -- k + Q3)(g~3 + "~321)], +5goVt,[j + 4(Q1 _ I -2 

in which we have put ~ = c~i - ~ and utilized [G.38] and [G.39]. The quantity J is as 
defined in [G,37]. Since W 1, W 2, W.~, g11, s22, ,~12, s23 and g3a may be chosen independently, 
the above inequality will be satisfied if [G.32], [G.40], [G.41] and [G.42] are satisfied, and 
if also 

J' "~" 6[rK±W~ - J3-QNWl,~23 + 3-1-~(Q1 - 51 + Q3),~,23] > 0, 
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As in the case of [G.37], satisfaction of these two inequalities requires that the two 2 × 2 
matrices 

K ±, 3 and 3,~ , 
5 N 10(g') 1 101t, ~ 1 

both be positive definite. This will be the case if ~K~ > 0. ~(Q~ -- ~ + Q3) > 0. and if 

~ ° K ~ I Q ,  - ~ + Q , I  > ( ± L"~I -~ 

The first two of these inequalities are already contained in [G.32b] and [G.41I. while tile 

latter requires that 

(5 N), 
Q'+Q"-~-> 3;K 5 

From [2.28b] the term in parentheses is the dimensionless angular velocity parameter B. 

Therefore, from the definition _of ~:31")" in [2.36] the latter inequality requires that 

Q, + Q,] > 1/5. [G.43i 

Equations [G.40]- [G.43] constitute the inequalities imposed on the Q material constants 

by the requirement that the additional energy dissipation rate satisfy [G.19]. Each of these 
four relations is satisfied by all of the bodies whose properties are tabulated in Section 3. 

Energy dissipation in a dilute suspension of.lbrce-[ree and couple-li'ee Brownian particles. 
Upon putting F = 0 and L = 0 in [G.25a] there is obtained 

E + = 5/~,, I~,A :s. [6.441] 

According to [3.4] and [2.17c], 

A = s :Q" [G.45] 

in the present circumstances. Inasmuch as Q" = Q"let is a function of the orientation e of 
the particle, this makes E + ~ E+(e). Accordingly, [G.44] gives the additional energy dissi- 
pation rate resulting from the presence of a force- and couple-free axisymmetric particle 
suspended in a homogeneous shearing flow and possessing an instantaneous orientation e 

relative to, say, the principal axes of the undisturbed shear s. 
The additional mechanical energy dissipation rate (per unit time) per unit superficial 

volume of suspension, specific to particles of orientation e, is therefore 51t,,qSA:s. Con- 
sequently, the additional dissipation rate D + per unit volume due to particles of all orienta- 

tions is 

D + = 5p , ,¢+A:s f (e )  d2e. 

In consequence of [4.4a], [4.18], [4.21] and [4.6a], this may be written as 

D + = 5~to0G2<A'> : S, 
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correct to the first order in ~. The rate of dissipation D ~ per unit volume of suspension due 
to the fluid alone being subjected to a mean shear S is 

D ~ = 2~oS:S - 2#oGaS:S. [G.46] 

Hence, the total dissipation rate D per unit volume, 

D - -  D ° + D +, [G.47] 

is given by the expression 

to the first order in 0. Comparison with [4.23] shows that this may be written as 

D = T:S,  [G.48] 

where T is the mean deviatoric stress in the suspension. Thus, in the absence of external 
forces and couples, the dissipation rate per unit volume of suspension is equal to the product 
of the mean devia.toric stress with the mean rate of strain. This is a very satisfying result from 
a continuum mechanical point of view, since it is precisely what one would have anticipated 
(for a symmetric state of  stress). 

Equation [G.48] constitutes the generalization to the case where rotary Brownian motion 
is sensible of a similar result due to Goddard & Miller (1967), Frankel & Acrivos (1970), 
and Batchelor (1970). 

From the inequality [G.19] in conjunction with [4.4a] we find that to the first order in 0, 

D + > 2#o~S:S. 

With use of [G.46], [G.47] and [G.48] this furnishes the following lower bound on the 
dissipation rate: 

D = T :S  -> 2#o(1 + ~b)S:S > 0, [G.49] 

in which the equality sign applies only when S = 0.* 

A P P E N D I X  H 

Evaluation of the normalization constant K defined in [10.60] 

Substitute the expression for A± derived from [10.3 l] into [10.60] and utilize the displayed 
equations following [10.61]. In this manner one obtains 

K = ( ~ e x p ( , e . C . e )  d2e [H.I] 
J 

* Note from [2.9] to [2.11], in conjunction with the fact that the suspended particles are both force-free and 
couple-free, that the conditions [G.I I] will all be satisfied ifs = 0. 
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Q~ 

S \j0nts0here 
C '" PC2 

Figure 23. Definition sketch of the spherical polar angles ® and q~. 

to terms of dominant  order in the small parameter  D,. Integration is over the unit sphere. 

Let e 1 and e 2 be mutually perpendicular unit vectors lying along the principal axes of the 

symmetric planar dyadic C, and denote by C1 and C2 its principal values, both of which 
are positive. Thus, we may write 

C = c l c l C l  + c2e2C 2. [H.2] 

(In the interests of generality we will not assume that A is symmetric, so that e~ and e2 are 
not necessarily identical to the unit vectors a~ and aa, respectively, appearing in [10.63].) 

As in figure 23, the triad (el, Ca, e ~) constitutes a mutually perpendicular system of unit 

vectors. 
Let (®, q)) be the spherical polar angles defined in figure 23, with ® the polar angle 

measured from e °~ and the • the azimuthal angle measured from e t. In this system we may 

write that 

e = el sin ® cos q~ + e 2 sin ® sin • + e ~ cos O. [H.3] 

Sincef(e) = f ( - e ) ,  equation [H. 1] may be integrated over the unit hemisphere 0 _ ® <_ re/2, 

rather than over the complete unit sphere 0 < ® < rt, and the value of the resulting integral 

doubled to obtain K. Hence, 

~ n  f~tI2 
K = 2 exp [ - C(~) sin 2 0 ]  sin ® dO d~,  [H.4] 

=0 o0=0 

wherein 

C(O) = C1 cos 2 q~ + C2 sin 2 q~. [H.5] 

Since s in2® = 1 - c o s 2 0  and sin ® dO = - d ( c o s  0),  it is possible to effect the ® 
integration analytically in terms of the error function. However, we will content ourselves 
with performing an asymptotic integration, consistent with the asymptotic nature of [10.581 

itself. 
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Inasmuch as C = 0(1)7 ~), in the limit of weak Brownian motion the integrand of [H.4] is 
nonzero only in the immediate vicinity of the pole, ® = 0. Consequently, in this limit we 

may utilize the approximation sin O ~ O. Hence, [H.4] may be written as 

K = 2 F(tl)) dq), [H.6] 
--0 

where 

F(O) = exp ( - CO2)O dO. [H.7] 
=0 

Insofar as dominant terms are concerned, it is immaterial that we have replaced by upper 
limit of integration, O = n/2, by O = oc. This is a consequence of the fact that the integrand 
of [H.7] is everywhere vanishingly small in the limit as D, --, 0, except in the immediate 
proximity of the pole, O = 0. Asymptotically, the resultant error is negligible.* 

Straightforward integration of [H.7] yields 

1 
Ftq)) = - - -  [H.8] 

2C(O) 

Therefore, 

in which 

= f2, d¢ fo ~ d¢ K Jo c~)=2 c~)=2[1(q'Cz)+tIq'q)l' 

I(C~, C2) = = [H.9] 
~o C,  cos  2 ~ + C2 sin 2 • 2(Ct C2) 1/2 

Since, in general, det C = CIC2, this yields 

K = 2rc(det C)-  1/2. [H.10] 

The second moment (ee)  required in the rheological calculations can be calculated by 
writing 

<ee)=fseefd2e+fs ee f  d2e, 
I II 

* This asymptotic procedure can be made more rigorous (Brenner 1970) by introducing an "inner" stretched 
variable O = O/x/~,  in place of O. This new variable possesses the property of being of O(I) in the proximity of 
the pole for small D,. Indeed. such a procedure provides an alternate and more systematic asymptotic technique 
for solving the basic orientational diffusion equation. 

1 

sin 

where IO. ~l are the appropriate spherical polar angles measured relative to the stable terminal orientation e ~. 
This procedure can be employed to obtain higher order terms in the expansion. 
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Figure 24. Definition sketch for the components of the perturbation vector A relative to the 
direction e ~ of the terminal orientation of an axisymmetric particle. 

in which S I refers to the upper hemisphere (0 < 19 < 7z/2) in figure 24, and S,  to the lower 

hemisphere (n/2 < 19 < n). Since both  f(e) and ee are even functions of e (cf. [10.62]) the 
above may be written as 

On S~ we have exactly that  

( ee )  = 2 fs e e f d 2 e '  [H.11] 
I 

e =  e ~ - +  ~ ,  + Al o n S  l, [ H . 1 2 ]  

where ~, and A± are the vectors depicted in figure 24. Thus, since ~, = OIA~t we have that 

on S,, 

ee = e~e ~ + e ~ ,  + A~e~ + e ~ A l  + ( e ~ A j  * + A±AI + O(A3). [H.13] 

By definition, A,, is col±near with e% We may therefore write 

At1 = K e ~ '  

To determine ~c, dot  multiply [H.12] by e ~', thereby obta ining 

cos19 = e . e  ~ = 1 + ~¢, 

whence 

A. = - e ~ ( 1  - c o s ® )  onS~. [H.14] 

Since A,  is perpendicular  to e% we have by identity that  

A± = (1 - e ~ e ° ~ ) . A  l ,  

whence, upon utilizing [H.12], 

A l = (I - e ~ e ~ ) . e .  [ H . 1 5 ]  



RHEOLOGY OF A DILUTE SUSPENSION OF AXiSYltlMETRIC nROWNIAN PARTICLES 

Collecting results gives 

(ee)=2e®e~fsfd2e-4e®e~fs(1-cosO)fd'e 
I ! 

+ 2(X + X t) + 2 fs A±A±fd2e + O(A3)' 
l 

in which l is the dyadic 

t '  
= e~(l - eOOeOO). | efd ee. l 

,JS I 

From [H.3] and [10.62] we have that 

f(®, O) = K- l exp [-(CI cos 2 • + C2 sin e O) sin 2 ®]. 

Therefore, 
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[H. 16] 

[H.17] 

[H.18] 

e fd2e  = el d@ sin2 ® cos Of(®,O) dO 
I o 0 = 0  = 0  

[,,/2 f2" + e2 Jo = o dO sin 2 ® =o sin Of(®, O) dO 

f 
n/2 : ~ n  

+ e ~ sin ® cos ® f(®, O) d® dO. 
dO=O =0 

The • integrations in the first two integrals above may be subdivided into integrals from 
• = 0 to ;t and • = ~ to 2~. In this manner it is readily shown that 

2~ fcos 0 )  
: o ~ s i n O ~ f  (®'O) dO = 0, 

whence the first two integrals vanish. Thus, f e fdae  possesses, at most, a component in 
JS I 

the e ~ direction. But this component is annihilated by the operator I - e°°e ~ in [H.17]. 
Consequently, 

Z= 0. [H.19] 

Moreover, since f is an even function of e, we have in [H.16], from the normalization 
condition imposed on f, that 

fs f d2e = ½. [H.20] 
! 

Likewise, since f is an even function of A± (cf. [10.58]), the last integral in [H.16] can be 
expressed as half the comparable value over the entire unit sphere. In this manner one 
obtains 

<ee) = e~e~(1 - 4~) + <A±A±> + O(A3), [H.21] 
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in which 

and 
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( A i A I )  = ~A±A±f{A±)d2e, 

5' = (1 - cos ®l f(®, ~) sin ® dO d(1). 
= 0 = 0 

The integral [H.22] can be evaluated by noting from [10.60] that 

or. using [H.2], 

From [H.19] this yields 

1 ?K ?InK 
(A~A. )  . . . . .  -= - - -  

K ~C ?C 

( A t A L )  - -  - -  C l e l  ? C ~  + c 2 c 2  In  K .  

[H.22] 

[H.233 

[H.24] 

Since cos 2 ~ + sin 2 ~ = 

Consequently, 

7 = - ~  + InK. 

Comparison with [H.24] shows that 

7 = ¼ tr (AiAi), 

1, it readily follows from this that the integral appearing in [H.26] is 

2t,¢C + ecd 

[H.27] 

[H.283 

However, from [H.4] and [H.5] we have asymptotically that 

K = 2 exp [ - (C~ cos2 ¢ + C e sin 2 ¢)®2]® dO. 
=0  =0 

which applies irrespective of whether or not A is symmetrical. 
The integral [H.23] can be asymptotically evaluated by observing that f is nonzero only 

in the immediate vicinity of the pole ® = 0. Thus, expansion of the trigonometric functions 
in ® for small ®. with use of [H.18] yields 

;' = ½K-1 exp [ - ( C ,  cos z • + C2 sin: O)®2]®3 dO. [H.26] 
=0 =f~ 

<AIAI>-- !l c'c' < < t  - IH.257 
2~ C, + C2 l 
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and thus from [H.25], 

;, = I t r ( C  -1) - g + • 

Substitution of [H.25] and [H.29] into [H.21] thereby yields 

[H.29] 

(ee) = [1 - ½tr(C-1)]e®e ~ + ~C -I [H.30] 

to terms of dominant order in D, - l .  Note that since tr(C°e ~) = e ~ -e ~ = 1 this result 
correctly reduces to the form tr (ee) = 1, a necessary consequence of the fact that e .  e = 1. 

The values of the normalization constant [H.10] and the second moment [H.30] differ 
from the values obtained by Hinch (1971), namely 

and 

2 
g H i n c  h = - det C, 7t 

(ee)Hin~ h = eO~e ~ + C - l .  

That our values for these two parameters, rather than Hinch's, are correct can be confirmed 
by reference to a particular example, where the exact orientational distribution function 
is known for any degree of intensity of the Brownian movement, by then passing to the 
limiting case where D, --* 0. 

With this in mind, consider the axisymmetric extensional flow field [5.1] for the case where 

B G > O .  

With use of [5.3] and [5.4], equation [10.16] gives 

H = ( 1 / 2 ) B G ( 3 i a i  3 - I). 

[H.31] 

[H.32] 

As can be demonstrated from [10.I7] and [10,18] (Brenner 1972a, 1972c), in the absence of 
rotary Brownian motion an axisymmetric body for which [H.31] holds adopts a stable 
terminal orientation given by 

e ~ = i3. [H.33] 

As thereupon follows from [10.19], the eigenvalue corresponding to this orientation is 

h = B G .  [H.34] 

Equation [10.34] thus yields 

A = - ( 3 / 2 ) B G ( i  l i l  + i2i2). [H.35] 

The eigenvalues of this symmetric dyadic are A 1 = A 2 = -3BG/2. (Both being negative, 
this confirms the stability of the terminal orientation [H.33]). 

From [10.59] we find that 

C = i l i lC  1 + i2i2C2, [H.36] 

J.M.F., VoL I, No. 2 J 
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in which 

C 1 = C 2 = 3BG/4Dr = ~2 say, !H.37! 

where ~ is the dimensionless parameter defined in [5.101, 2 there being BG/Dr (cf. [4.16]!. 
Substitution of [H.36], [H.37] and [5.5] into [10.62] now yields 

1 42exp(_~2  • f(O) = ~ sin 2 0) ill.381 

for the value of the distribution function in the limit where ¢ >> 1. From [5.61 and [5.7ai, 
upon putting cos z 0 = 1 - sin 2 0, the exact value of the distribution function for this case is 

,/(0) = (K')- 1 exp ( - ~2 sin 2 0), IH.39i 

in which 

K' = 4rt~- ~D{~), [H.40i 

where D(~) is Dawson's integral, defined in [5.8]. For ~ >> 1 we have the asymptotic 
expansion* 

0(~t  = I + ~ + ~ + :3~-~- + . . . .  [H.411 

whence we obtain 

K'= 2r~/~ 2 for ~ >> 1. [H.42! 

Substitution into [H.39] yields a result identical to [H.287. This calculation confirms the 
correctness of the normalization constant [H.101. 

Similar confirmation of the second moment expression [H.30] is furnished by the present 
example. From [I-t.36], [H.37] and [H.33] we obtain 

1 
(ee )  = i3i  3 + (I - 3i3i3)  2~ 2 [H.43] 

The exact value for arbitrary ~ is given by [5.11] and [5.12a]. With use of [H.41] we find that 

, 
F(~)=  1 -- -~ + for~ >> 1. 

Substitution into [5.111 then yields a result identical to [H.43~, thereby confirming the 
correctness of [H.30]. 

* This semi-convergent expansion can be obtained by methods  similar to those utilized in obtaining the 
asymptotic expansion of the complementary error function (Carslaw & Jaeger 1959). That  this e~pansion yields 
accurate results can be confirmed by reference to the numerical values of Dawson's  integral tabulated by 
Abramowitz & Stegun (1968). 
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Sommaim--Des r6sultats explicites sont pr6sent6s pour les propri6t6s rh~ologiques completes de 
suspensions dilu6es de particules Browniennes axisymm6triques rigides possedant une symetrie 
avantarri6re lorsqu'elles sont suspvndues dans un liquide Newtonien soumis fiun ecoulement de 
cisaillement tri-dimensionel g6n6ral, soit 6quilibr6 soit d6s6quilibre. II est montr~ que ces propri~t6s 
rheologiques peuvent 8tre exprim6es en fonction de cinq constantes fondamentales materielles (/i 
l'exclusion de la viscosit6 du solvanO et qui ne d6pendent que de la grandeur et de la forme des 
particules suspendues. Des expressions sont pr6svnt~es pour ces constantes scalaires pour un 
Hombre de solides de r6volution, y compris les sph6roides, les halt6res de rapport d'aspect arbitraire 
et les corps longs et minces. Celles-ci sont utilis6es pour calculer les propri~tes rh6ologiques d'une 
vari&d d'6coulements de cisaillement diff6rents, y compris les 6coulements uniaxiaux et biaxiaux 
extensionels, les 6coulements de cisaillement simples et ceux bi-dimensionels gen6raux. II est 
d6montr6 que les propri6t6s rh6ologiques applicables ~ un ~coulement de cisaillement general 
bi-dimensionel peuvent (:tre d6duites imm6diatement de c¢lles d'un 6coulement de cisaillement 
simple. Cette observation accroit grandement I'utilit6 d'une grande pattie de la litterature sur 
l'6coulement Couette, surtout les caiculs num6riques 6tendus de Scheraga et  al.  (1951, 1955). 

La communalit6 de nombreux r6sultats disparates, r6pandus et diffuses dans des publications 
ant6rieures est soulign6e et pr~sentee d'un point de vue unifi6 hydrodynamique. 

Auszug--Es werden bestimmte Ergebnisse fiir die vollst~indigen Rheologieeigenschaften verdfinnter 
Suspension von starren, achsensymmetrischen Brown'schen Teilchen dargestellt, welche lfings- 
laufende Symmetrie besitzen, wenn sie in einer Newton'schen Fliissigkeit unter Einflul3 eines 
allgemeinen dreidimensionalen Scherflusses, gleichm/iflig oder ungleichm/iflig, aufgeschl/immt 
werden. Es wird gezeigt, dab diese Rheologieeigenschaften in Form von fiinf elementaren Material- 
konstanten ausgedrfickt werden k6nnen (ausschliefllich der Viskosit/it des L6sungsmittels), welche 
nut yon den Gr6Ben und Formen der Suspensionsteilchen abh/ingen. Es werden Ausdriicke f/)r 
diese skalaren Konstanten fiir eine Anzahl fester Rotationsk6rper, einschliefllich Sph/iroiden, 
Hanteln yon beliebigem L/ingenverh~iltnis und langen, schlanken K6rpern dargestellt. Diese 
werden zur Berechnung rheologischer Eigenschaften fiir eine Auswahl verschiedener Scherfltisse 
verwandt, einschlieBlich einachsiger und zweiachsiger Streckungsfliisse, einfacher Scherfliisse und 
allgemeiner, zweidimensionaler Scherfliisse. Es wird dargestellt, dab die, zu einem allgemeinen, 
zweidimensionalen Scherflfl geh6rigen, rheologischen Eigenschaften sofort yon den Eigenschaften 
f/Jr cinen einfachen Scherflufl abgeleitet werden k6nnen. Diese Beobachtung vergr6Bert die 
N/Jtzlichkeit yon vielen der Schriften vor der Conette FlieBliteratur, besonders der ausfi~hrlichen 
zahlenm/iBigen Berechnungen yon Scheraga et  HI. (1951, 1955). 

Es wird die Allgemeinheit vieler unvereinbarer Ergebnisse betont, die in friiheren Ver6ffent- 
lichungen verstreut und verteilt waren, und diese werden von einem einheitlichen hydrodynamischen 
Standpunkt aus dargestellt. 

Pe3mMe -HpeglcTaa~arOTCa ncqepnbinalomne pe3ynhZaTl,I na no:mb~e peoaor~qecrne 
xapalgrepncTnl<a pa36aaaeanblx cycnenanfi XeCTKHX, OCOCrlMMeTpnqHblX [~poyallaHOBblX qacTnu 
HMelOI.L[HX CHMMeTpHIO BO BClO ~anHy,  I(OF2~I OHH B3BeIlleHbl B HblOTOHOBCKOH )KH~I(OCTH, 

no~aaepxxermo~ o6nleMy ycTanoBnBttleMyc~ n a n  HeyCTaHOI;nattleMyca TpexMepHOMy TeqeHnlO c 

I1onepe~lHblM FparlneHTOM CI<opocTH. ,~[eMOHCTpRpyeTc~I, tlTO 3TH pcoJlornqecKHe xapaKTepHCTHKrl 

MO)KHO Bblpa3HTb B HflTH OCHOBHblX MaTepna.rlbnblX KOHCTaHTaX, ncK~/oqag BII3KOCTb 

paCTBOpHTe2DI, 3anncamefi TO.rlbKO OT pasMepa n dpOpMb~ B3BeltleHHblX qacTnti. ;~a~oTca 
Bblpa~eHl6q 3THX cI(afl$1pnbIX KOHCTaHT na Tena spamenas cqbepoaaon, ranTeaefi HpOH3BOabHOFO 

Bn~a H ~2"/HRHblX TOHKHX Tea. OHH npHMeHglOTCfl ~ a g  BbltlHCaeHH~I pe o~ornqe c ~nx  xapaKTepncTH~ 

pa3anttHblX THIIOB TeqeHHH C HonepeqHblM Fpa2lnenTOM cKopocTH, BK.qloqa~l O~HOOCHble n 

~IByXOCHble Teqenn~l, npocTble TeqeHnfl c nofiepeqHblM Fpa}IHeHTOM cKopocTH, H o6tUne 
~[8yxMepHb~e TeqeHn~ c Honepeqnb~M Fpa~ine8TOM Cl~OpOCTtt. Haman, q r o  peoJ~oFHqeC~ne 

xapa~cTepHcTni~n npr~cytune O6RleMy nSyxMepXoMy TeqeHH~O C nonepe,tHbiM Fpa£tHeHTOM 
C~¢opocTH MOX~HO BblBeCTH H3 xapa~TepncTng npOCTOFO Teqenn~ c llOflepeqnblM Fpa2IHeHTOM 
e~opocTn. 9To onpeaeaeaae na MnOrO nos~amaeT uennocrb npe~Hefi anTepaTyph! O TeaeHaa 
Ky3rxa, oco6enno, qncaenn~e pacsea~a Lllepara a ~p. (1951, 1955 r). 

B nrore, 9Toil pa6orofi npnaaeTcs oco6oe 3naqeHne MnornM OTan~tarotunMca apyr OT apyra 
pe3yabxaTaM n norrpoc peoaornqec~nx xapa~repncTn~ npegcxa~aseTca c ynndpnunposannofi 
rn~Ipo~lnHaMnqecKofi TOqg~ 3peHna. 


